
Computational Physics II

Lecture notes

Wolfgang Dobler

Revision: 1.50
Date: 2007/07/31 21:16:31

c© 2006 Wolfgang Dobler

Some Rights reserved.

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike license 2.5.

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:

Attribution. You must attribute the work in the manner specified by the author
or licensor.

Noncommercial. You may not use this work for commercial purposes.

Share Alike. If you alter, transform, or build upon this work, you may dis-
tribute the resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms
of this work.

Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code, which can be found at
http://creativecommons.org/licenses/by-nc-sa/2.5/.

http://creativecommons.org/licenses/by-nc-sa/2.5/

Contents

1 More on Runge–Kutta methods 1
1.1 Runge–Kutta revisited . 1

Examples . 1
1.2 Step-size control . 2

1.2.1 The Milne device . 3
1.2.2 Embedded Runge-Kutta schemes . 4

1.3 Stability . 5
1.4 Systems of ordinary differential equations . 7
1.5 Boundary-value problems . 9

1.5.1 Shooting method . 10
1.5.2 Problems that can be reduced to standard boundary value problem . 11

Eigenvalue problem . 11
Free boundary problems . 12

2 Random numbers and Monte Carlo methods 15
2.1 Basic probability theory . 15

2.1.1 Expectation value, variance, covariance 17
2.1.2 Joint and conditional probabilities . 18
2.1.3 Distribution of sums of random variables 19
2.1.4 Individual distributions . 20

2.2 Generating random numbers with a given distribution 21
2.2.1 Congruential generators . 21
2.2.2 Other distributions . 22

Transformation method . 22
Acceptance-rejection method . 24

2.2.3 Superposition method . 27
2.2.4 Discrete distributions . 28

2.3 The central limit theorem . 29
2.4 Monte Carlo integration . 33

2.4.1 Error estimates . 35
2.4.2 Quasi-random numbers . 36

2.5 The Metropolis et al algorithm . 37
2.5.1 Random processes . 37
2.5.2 Ising model of a ferromagnet . 39
2.5.3 Quantum Monte Carlo integration . 40

i

ii CONTENTS

3 Optimization 45
3.1 Simulated annealing . 45

4 Partial differential equations 47
4.1 Classification . 47
4.2 Finite differences . 48
4.3 Elliptic problems . 52

4.3.1 Fourier method . 53
4.3.2 Multigrid method . 55

4.4 Parabolic problems . 57
4.4.1 Explicit scheme . 57
4.4.2 Fully implicit scheme . 58
4.4.3 General implicit and Crank-Nicholson schemes 58
4.4.4 Stability . 59
4.4.5 Schemes to avoid: the Dufort–Frankel scheme; (in)consistency 61
4.4.6 Boundary conditions . 63
4.4.7 Non-homogeneous equation . 64
4.4.8 Higher-order explicit schemes . 64

4.5 Hyperbolic problems . 64
4.5.1 Low-order schemes . 65

The Lax scheme . 66
The upwind scheme . 67
More low-order schemes . 68
TVD schemes . 68
Conservative schemes . 69

4.5.2 Higher-order schemes . 69
Spectral characteristics of finite-difference stencils 69
Stability . 71
Artificial viscosity . 73
The length of the time step . 73
Boundary conditions . 74
Application I: Sound waves . 76
One-dimensional case . 77
Sound waves . 77

A Interactive Data Language (IDL) 79

B Concurrent Versions System (CVS) 97

C The Pencil Code 121

Chapter 1

More on Runge–Kutta methods

1.1 Runge–Kutta revisited

Explicit s-stage (stage = substep) Runge–Kutta scheme:

τ1 = t0 , η1 = y0 , k1 = hf(τ1,η1) , (1.1)
τ2 = t0 + c2h , η2 = y0 + a21k1 , k2 = hf(τ2,η2) , (1.2)
τ3 = t0 + c3h , η3 = y0 + a31k1 + a32k2 , k3 = hf(τ3,η3) , (1.3)
...

...
... (1.4)

τs = t0 + csh , ηs = y0 + as1k1 + as2k2 + · · · + as,s−1ks−1 , ks = hf(τs,ηs) , (1.5)
t1 = t0 + h , y1 = y0 + b1k1 + b2k2 + · · · + bs−1ks−1 + bsks . (1.6)

The coefficients ci, aik and bi are conveniently represented in a Butcher tableau

c A
bT =

0
c2 a21

c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

(1.7)

where all omitted elements ai j vanish.

Examples

Euler scheme (= 1-step first order scheme).

Explicit Euler scheme
0

1 (1.8)

1

2 I. M  R–K 

Implicit Euler scheme:
1 1

1 (1.9)

2-stage 2nd order Example: the “tangent scheme”

0
1
2

1
2

0 1
, (1.10)

3-stage 3rd order Example: “classical” 3-stage Runge–Kutta scheme

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

(1.11)

4-stage 4rd order Example: classical 4-th order Runge–Kutta scheme:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

(1.12)

Note: 5th order requires 6 stages!

1.2 Step-size control

The time step δt cannot be larger than any of the physical time scales involved. However,
these vary widely from problem to problem, and can even vary in time for one and the
same problem. Hence we want a procedure to automatically set and adjust the time step
δt.

δt will depend on the desired accuracy, so we need to monitor (an estimate of) the error.

Local error:
δn ≡ yn − y(exact)

n ,

assuming yn−1 was correct

1.2. Step-size control 3

Global error:
∆n ≡ yn − y(exact)

n ,

assuming y0 was correct

For small δt:

|∆n| ≈

∣∣∣∣∣∣∣
n∑

i=1

δi

∣∣∣∣∣∣∣ ≤
n∑

i=1

|δi|

Error control: Estimate δi and try to ensure that δi < ε for given error tolerance ε. If not,
replace step with new time step using smaller δt.

1.2.1 The Milne device

How do we get the estimate δ̃i?

One method is to compare 2 steps at δt with one step at 2δt:

t0 t2

δt δt

2δt

If we know our method is of order p, then

y(δt)
1 = y0 + C δtp+1 +O

(
δtp+2

)
, (1.13)

y(δt)
2 = y0 + 2C δtp+1 +O

(
δtp+2

)
, (1.14)

y(2δt)
2 = y0 + C 2pδtp+1 +O

(
δtp+2

)
. (1.15)

This allows us to determine C and thus the error 2Cδtp+1 of y(δt)
2 :

y(2δt)
2 − y(δt)

2 = (2p+1
− 2)C δtp +O

(
δtp+1

)
, (1.16)

thus the error estimate for two steps is

δ̃1 + δ̃2 =
1

2p − 1
(y(2δt)

2 − y(δt)
2) . (1.17)

How much extra effort does it take to get this error estimate?

without error estimate: 2s evaluations of right-hand-side for s-step scheme;

with error estimate: 2s + (s−1) evaluations of right-hand-side (rhs(t0, y0) is already
known).

4 I. M  R–K 

Thus, the ratio is
3 − 1/s

2
≈

3
2
. (1.18)

More generally: Combine 2 methods of equal order with known error ratio to determine
δ̃. This method is called the Milne device.

Note: We could even combine the two methods (single and double step) to a higher-order
method using Richardson extrapolation1 But nowadays people prefer. . .

1.2.2 . . . Embedded Runge-Kutta schemes

Idea: use two schemes, one of order p, the other of order p+1. Then

y(p)
1 = y(exact)

1 + Cδtp+1 +O
(
δtp+2

)
, (1.19)

y(p+1)
1 = y(exact)

1 +O
(
δtp+2

)
. (1.20)

(1.21)

Thus,

δ̃(p)
1 = y(p)

1 − y(p+1)
1 = C δtp +O

(
δtp+1

)
(1.22)

= δ(p)
1 [1 +O (δt)] , (1.23)

is an estimator for the local error of y(p)
1 .

In practise: use error estimate δ̃(p)
1 , but continue next step with y(p+1)

1 , for which we have no
error estimate, but which is very likely to be more accurate (local extrapolation).

Apparent problem: doing two Runge–Kutta schemes in tandem is expensive.

Solution: Construct schemes that share the same coefficients ci, aik (Fehlberg).

As an example, consider the Cash–Karp scheme

0
1
5

1
5

3
10

3
40

9
40

3
5

3
10 −

9
10

6
5

1 −
11
54

5
2 −

70
27

35
27

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

37
378 0 250

621
125
594 0 512

1771

2825
27648 0 18575

48384
13525
55296

277
14336

1
4

(1.24)

1We would then not have an error estimate for that method, but using δ̃ for the lower-order method
gives normally a quite conservative error estimate. See ‘local extrapolation’ below.

1.3. Stability 5

The two lowest lines represent the coefficients bi for two different schemes: one of 5th order
(second last line) and one of 4th order (last line).

How to calculate the time step for the next step or the refinement step: From |δ| ∼ δtp and
the requirement that ideally |δ| = ε, we find that the old and new value of δt are related by

|δ|
ε
=

(
δtold

δtnew

)p+1

, (1.25)

and hence

δtnew = δtold

(
ε
|δ|

)1/p+1

(1.26)

F90 code:
Cash–Karp-4-5

do while (t0 < tmax)

call do_step(t0,y0,dt, y4th,y5th)

absdelta = abs(y4-y5)

dt = 0.9*dt*(epsi/absdelta)**(1/(p+1)) ! 0.9 = safety factor

if (absdelta < epsi) then

! prepare next step

t0 = t+dt

y0 = y5th ! local extrapolation

else

! need to redo step with previous t0, y0 and new dt

endif

enddo

Example: Consider the Curtiss–Hirschfelder equation

ẏ = −50(y − cos t) with y(0) = 1 , (1.27)

which has the solution

y =
2500
2501

cos t +
50

2501
sin t +

1
2501

e−50t . (1.28)

Figure 1.1 shows the solution f and time step δt as a function of time.

1.3 Stability

For the linear ODE
ẏ = γy (1.29)

6 I. M  R–K 

0 5 10 15 20 25
t

−1.0

−0.5

0.0

0.5

1.0

f(
t)

0 5 10 15 20 25
t

0.00

0.05

0.10

0.15

δt

Figure 1.1: Top: Numerical solution f (t) (black continuous line) and analytical solution (red dashed line) for
the Curtiss–Hirschfelder equation (1.27). Bottom: Dynamical time step δt(t). The numerical method used is
the Cash–Karp embedded Runge–Kutta scheme. The dotted line here shows the average time step.

1.4. Systems of ordinary differential equations 7

with the complex constant γ, we know that the solution

y(t) = y0eγt (1.30)

decays for t→∞ if and only if<γ < 0.

A time-stepping scheme is stable (for this equation) if its approximations yn tend to zero
for n→∞, otherwise it is unstable.

If we apply the explicit Euler scheme to Eq. (1.29), we find

y1 = y0 + δtγy0 = (1 + γ δt)y0 = Ay0 , (1.31)

where A is the complex amplification factor. If |A| < 1, the numerical solution yn decays
for n→∞, while for |A| > 1 it grows unboundedly. Thus, we get the stability requirement

|1 + γ δt| < 1 . (1.32)

For any explicit two-step second-order (i.e. s = p = 2) scheme,

A = 1 + Γ +
Γ2

2
, (1.33)

where we have introduced
Γ ≡ γ δt . (1.34)

For any explicit s = p = 3 scheme, we get

A = 1 + Γ +
Γ2

2
+
Γ3

6
, (1.35)

and for s = p = 4 scheme, we get

A = 1 + Γ +
Γ2

2
+
Γ3

6
+
Γ4

24
. (1.36)

Figure 1.2 shows the stable and unstable values of Γ for these Runge–Kutta schemes with
s = p from 1 to 4. One can clearly see that explicit Runge–Kutta schemes have only a
limited area of stability.

1.4 Systems of ordinary differential equations

Runge–Kutta methods lend themselves directly to the solution of systems of ordinary
differential equations, provided the initial conditions all refer to the same time t0. The
only thing that changes is that now the variable y and the right-hand side of the equation
become vectors:

ẏ = f(y, t) . (1.37)

8 I. M  R–K 

−4 −3 −2 −1 0 1
ℜ Γ

−3

−2

−1

0

1

2

3

ℑ
 Γ

stable

unstable

p=1

p=2

p=3

p=4

Figure 1.2: Complex stability domains for explicit Runge–Kutta methods of order 1 to 4 applied to
Eq. (1.29).

Note: If a scalar Runge–Kutta solver is coded in a programming language with array
syntax (Fortran90, Octave, IDL, PerlDL, etc.), it will work out of the box for systems of
equations as well.

Note: A kth order differential equation

y(k) = f
(
y, ẏ, . . . , y(k−2), y(k−1), t

)
(1.38)

can always be transformed into a system of k first-order ODEs, using the substitution

z1 ≡ y , z2 ≡ ẏ , . . . , zk−1 ≡ y(k−2) , zk ≡ y(k−1) . (1.39)

The resulting system takes the form

żk = f (z0, z1, . . . , zk−2, zk−1, t) , (1.40)
żk−1 = zk−2 , (1.41)

...

ż2 = z3 , (1.42)
ż1 = z2 . (1.43)

(1.44)

1.5. Boundary-value problems 9

Stability of a linear system A linear autonomous system of k ODEs has the form

ẏ =My , (1.45)

where M is a square k× k matrix. For arbitrary initial conditions, the solution vector yn

will tend to zero if, and only if all eigenvalues µi ofM satisfy<µi < 0.

For time-stepping schemes, this translates to [for Eq. (1.45)]

yn+1 = Ayn , (1.46)

with the amplification matrixA. The scheme is stable if and only if

%(A) < 1 , (1.47)

where %(A) ≡ maxi |ai| is the spectral radius (maximum modulus of eigenvalues ai) of A.
In other words, stability is equivalent to

|ai| < 1 ∀ ai .

Example: For the (explicit) Euler scheme, we have

yn+1 = yn + δtM · yn = (1 + δtM)yn , (1.48)

thusA = 1 + δtM.

Let ek and µk represent the eigenvectors and eigenvalues ofM:

M · ek = µkek . (1.49)

Then
A · ek = ek + µkek = (1 + δtµk)ek , (1.50)

and thus the ek are also eigenvectors ofA, and the corresponding eigenvalues are

ak = 1 + δtµk . (1.51)

The stability requirement for the Euler scheme is thus

|1 + δtµk| < 1 , (1.52)

in analogy to Eq. (1.32).

1.5 Boundary-value problems

If a system of differential equations has boundary conditions specified for different times
t0, t1 (and possibly more), then we have a boundary value problem, rather than an initial
value problem. As in Sec. 1.4, such a system of ODEs may originate from one or several
higher-order equations.

10 I. M  R–K 

Example: Consider the steady state of a thermally conducting rod of length L. At the left
end (x = 0), the temperature is constant, while the right end (x = L) is insulating. Along
the rod, a heating function q(x) (units: W/m3) is applied.

x0 = 0 x1 = L

The thermal heat flux (strictly speaking: energy flux density, units W/m2) is given by

F = −λ
dT
dx

, (1.53)

where λ is the thermal conductivity. Thus, the boundary condition F = 0 at x = L leads to
dT/dx = 0.

Along the rod, the volume heating rate q must equal div F, and thus

d
dx

(
λ

dT
dx

)
+ q(x) = 0 . (1.54)

Thus, the complete problem is

(λT′)′ = −q(x) , (1.55)
T(0) = T0 , (1.56)

T′(L) = 0 . (1.57)

To use our Runge–Kutta methods, we need to transform this second-order equation into
two first-order ones; a natural choice for the auxiliary variable is F (but we could also just
use dT/dx):

F′(x) = q(x) , (1.58)

T′(x) = −
1
λ

F(x) , (1.59)

T(0) = T0 , (1.60)
F(L) = 0 . (1.61)

1.5.1 Shooting method

One of the most popular methods for solving boundary value problems is the shooting
method, where one integrates the corresponding initial value problem from one end of
the interval to the other, using guesses for the initial values not specified by boundary
conditions, and then tuning the guessed values such that the boundary condition at the
other end of the interval is satisfied.

In our example, the shooting method goes like this:

1.5. Boundary-value problems 11

1. Start at x = 0 with T(0) = 0 and F(0) = ϕ (which initially is arbitrary)

2. Using a standard method for initial value problems (e.g. any Runge–Kutta method),
integrate Eqs. (1.58), (1.59) from x = 0 to L, which yields a value F(L;ϕ) for F, which
will depend on the ϕ chosen.

We thus have a mapping ϕ 7→ f (ϕ) ≡ F(L;ϕ). Now we simply apply any convenient
root-finding method to the equation f (ϕ) = 0 to find the appropriate value of ϕ.

General problem: N first-order equations:2

dyi

dt
= fi(y1, y2, . . . , yN, t) i = 1, 2, . . . ,N . (1.62)

n1 left and n2 = N − n1 right boundary conditions:

yi(t1) = Ai i = 1, . . . ,n1 , (1.63)
yi+ j(t2) = Bi i = 1, . . . ,n2 , (1.64)

where n1 + n2 = N and 0 ≤ j ≤ n1
3 Integrate the initial value problem from t1 with n1

correct boundary conditions and n2 guessed values yn1+1(t1) = ϕ1, . . . , yN(t1) = ϕn2 . The
boundary conditions (1.64) then yield n2 equations for the n2 unknowns ϕ1, . . . , ϕn2 . This
system can be solved with any (multidimensional) root-finding routine.

1.5.2 Problems that can be reduced to standard boundary value problem

Eigenvalue problem

An eigenvalue problem

dyi

dt
= fi(y1, y2, . . . , yN, λ) i = 1, 2, . . . ,N , (1.65)

yi(t1) = Ai i = 1, . . . ,n1 , (1.66)
yi+ j(t2) = Bi i = 1, . . . ,n2 (1.67)

only has solutions for certain values of the eigenvalue λ. Here n1 + n2 = N+1 and 0 ≤
j ≤ n1−1, and the problem would be overdetermined, were it not for the additional free
parameter λ.

We add the additional variable yN+1 = λ satisfying the equation

dyN+1

dt
= 0 (λ is constant after all) , (1.68)

and end up with a standard boundary value problem for the N + 1 variables y1, . . . , yN+1.
2 This assumes a certain ordering of the variables which can always be constructed.
3 j determines the ‘overlap’ of boundary conditions: if j = n1, every variable has exactly one boundary

condition to satisfy. Conversely, if j < n1, then n1 − j variables have two boundary conditions (one at t1 and
one at t2), while another n1 − j variables have no boundary condition.

12 I. M  R–K 

Example: Consider the acoustic eigenmodes of a string of tension F with linear mass
density (‘mass load’) η ≡ dm/dx. The Helmholtz equation for the displacement y(x) as a
function of x is

y′′ = −k2y , (1.69)

where the wave number k is related to the oscillation frequency ω via

k2 =
η

F
ω2 ; (1.70)

the quantity λ ≡ ω2 is our eigenvalue. As the string is fixed on either side, we have the
two boundary conditions

y(0) = 0 , y(L) = 0 . (1.71)

So we have a second-order equation and two boundary conditions — how do we fix the
additional degree of freedom?

The answer is: we can choose one more boundary condition, because the amplitude of
an eigenfunction is arbitrary, while we want our problem to have a unique solution. For
example, we can require y′(0) = z(0) = 1 and then get

y′ = z , (1.72)

z′ = −
η

F
λ y , (1.73)

λ′ = 0 , (1.74)

with the boundary conditions

y(0) = 0 , (1.75)
y(L) = 0 , (1.76)
z(0) = 1 . (1.77)

Free boundary problems

Consider the case of N equations

dyi

dt
= fi(y1, y2, . . . , yN) i = 1, 2, . . . ,N , (1.78)

yi(t1) = Ai i = 1, . . . ,n1 , (1.79)
yi+ j(t2) = Bi i = 1, . . . ,n2 , (1.80)

where the position of the left boundary t1 is given, but the position t2 of the right boundary
is unknown. Similar to the eigenvalue problem above, the position t2 adds one degree of
freedom, so we require N+1 boundary conditions for a well-defined solution (thus at least
one variable will have two boundary conditions), and n1 + n2 = N+1 and 0 ≤ j ≤ n1−1.

In this case, we can introduce the additional variable yN+1 ≡ t2 − t1, together with the
equation

dyN+1

dt
= 0 (t1 and t2 cannot depend on t!) , (1.81)

1.5. Boundary-value problems 13

Substituting the independent variable,

t − t1 ≡ τ yN+1 (and thus dt = yN+1 dτ) , (1.82)

we get

dyi

dτ
= fi(y1, y2, . . . , yN) yN+1 i = 1, 2, . . . ,N , (1.83)

dyN+1

dτ
= 0 , (1.84)

yi(t1) = Ai i = 1, . . . ,n1 , (1.85)
yi+ j(t2) = Bi i = 1, . . . ,n2+1 , (1.86)

which again has the standard form of a boundary value problem of N + 1 equations.

14 I. M  R–K 

Chapter 2

Random numbers and Monte Carlo meth-
ods

2.1 Basic probability theory

A random variable X can take values x (or y, or 2ψ−1, or 0.7).

X = 0.7 is an event, as is X ≤ 1.4. An event ω has a probability P(ω) with

0 ≤ P(ω) ≤ 1 . (2.1)

The union of two events has the probability

P(ω1 ∪ ω2) = P(ω1) + P(ω2) − P(ω1, ω2) (2.2)

where we have used the notation P(ω1, ω2) ≡ P(ω1 ∩ ω2) (the property that both ω1 and ω2

occur).

Discrete probability distributions: Random variable X takes on discrete set of values;
typically equidistant values The probability distribution function is defined as

FX(n) ≡ P(X ≤ n) =
∑
k≤n

pk , (2.3)

where

pn ≡ P(X=n) (2.4)

is the probability of the event ‘X equals n’.

15

16 II. R  M C 

Continuous probability distributions: Random variable X takes on value from an interval,
often (−∞,∞). The probability distribution function is

FX(x) ≡ P(X ≤ n) =

x∫
−∞

fX(x′) dx′ , (2.5)

where
fX(x) ≡

dFX(x)
dx

=
P(x < X < x+dx)

dx
(2.6)

is called probability density function, PDF or probability density or density function.

Note 1: For a discrete distribution, we can write

fX(x) ≡
dFX(x)

dx
=

∑
n

pnδ(x−xn) , (2.7)

where δ(·) is Dirac’s delta function.

Note 2: For any distribution, FX(−∞) = 0 and FX(∞) = 1.

Examples: Bernoulli distribution: X can take on values 0 or 1.

p0 = p , p1 = 1−p . (2.8)

which implies
FX(0) = p , FX(1) = 1 . (2.9)

Uniform distributionU: If U ∼ U(0, 1),1

[rectangle function]

then

fU(x) =


0 x < 0
1 0 ≤ x ≤ 1
0 x > 1

, (2.10)

which implies

FU(x) =


0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

. (2.11)

1 This is a short notation we will use for a few important distributions. It reads ‘U is distributed accord-
ing to the uniform distribution function with offset 0 and width 1’.

2.1. Basic probability theory 17

2.1.1 Expectation value, variance, covariance

The expectation value EX of X is defined as

EX ≡

∞∫
−∞

x dFX(x) . (2.12)

For a continuous distribution, this becomes

EX =

∞∫
−∞

x fX(x) dx , (2.13)

and for a discrete one

EX =
∞∑

k=−∞

xk pk . (2.14)

If X is a random variable, then an arbitrary function g(X) is, too. So we can define

Eg(X) ≡

∞∫
−∞

g(x) dFX(x) =


∞∫
−∞

g(x) fX(x) dx

∞∑
k=−∞

g(xk) pk

(2.15)

We can write

fX(x) =
∫
δ(ξ−x) fX(ξ) dξ = Eδ(X−x) . (2.16)

Note: The expectation value (2.12) is linear in X, thus in particular

E(X + Y) = EX + EY . (2.17)

The variance V(X) is defined as

V(X) ≡ E(X − EX)2 , (2.18)

which can be rewritten as

V(X) = E[X2
− 2X EX + (EX)2] = EX2

− 2EX EX + (EX)2 = EX2
− (EX)2 . (2.19)

The variance of X + Y is

V(X + Y) = E(X − EX + Y − EY)2

= V(X) + V(Y) + 2E(X − EX)(Y − EY)
= V(X) + V(Y) + 2 Kov(X,Y) , (2.20)

18 II. R  M C 

where
Kov(X,Y) ≡ E(X − EX)(Y − EY) = EXY − EX EY (2.21)

is the covariance of X and Y.

The correlation coefficient

%(X,Y) ≡
Kov(X,Y)√
V(X)V(Y)

(2.22)

satisfies −1 ≤ %(X,Y) ≤ 1.

If Kov(X,Y) = %(X,Y) = 0 (e.g. if X and Y are independent, see below), then

V(X + Y) = V(X) + V(Y) . (2.23)

2.1.2 Joint and conditional probabilities

Consider 2 random variables X, Y.

FX,Y(x, y) ≡ P(X≤x,Y≤y) (2.24)

is the joint distribution function, and

fX,Y(x, y) ≡
P(x<X<x+dx, y<Y<y+dy)

dx dy
= ∂x∂yFX,Y(x, y) (2.25)

is the joint probability density function.

If Y is irrelevant, X has the density function

fX(x) = P(x<X<x+dx,Y irrelevant) =

∞∫
−∞

fX,Y(x, y) dy (2.26)

(sometimes called the marginal distribution), and similar for fY.

Expectation values are now

Eg(X,Y) =
∫∫

g(x, y) fX,Y(x, y) dx dy . (2.27)

If
fX,Y(x, y) = fX(x) fY(y) , (2.28)

X and Y are called independent random variables. In that case,

Kov(X,Y) = EXY − EX EY =
∫∫

fX,Y(x, y) dx dy − EX EY

=

∫
fX(x) dx

∫
fY(y) dx − EX EY = 0 . (2.29)

2.1. Basic probability theory 19

But Kov(X,Y) = 0 (X and Y are uncorrelated) is not sufficient for stochastic independence.
Counter example:

X ∼ U(0, 1) , Y = 4X(1 − X) . (2.30)

The conditional probability of ω1 under the condition ω2 is

P(ω1|ω2) =
P(ω1, ω2)

P(ω2)
. (2.31)

For example,

P(X≤x|Y<2) =
P(X≤x|Y<2)

P(Y<2)
. (2.32)

If ψk (k = 0, 1, . . .) is a complete set of mutually exclusive events, i.e.

ψk ∩ ψl = ∅ for k , l , and
∑

k

P(ψk) = 1 , (2.33)

then ∑
k

P(ω|ψk)P(ψk) =
∑

k

P(ω,ψk) = P(ω) , (2.34)

i.e.
P(ω) =

∑
k

P(ω|ψk)P(ψk) . (2.35)

Equation (2.35) is called the total probability theorem.

2.1.3 Distribution of sums of random variables

Let X and Y be two random variables with probability density functions fX and fY, respec-
tively. What is the distribution of Z ≡ X + Y?

We can write the probability density of Z as

fZ(z) = Eδ(X + Y − z) =
∫∫

dx dy fX,Y(x, y) δ(x+y−z) =

∞∫
−∞

fX,Y(x, z−x) dx . (2.36)

If X and Y are independent, this becomes

fZ(z) =

∞∫
−∞

fX(x) fY(z−x) dx , (2.37)

i.e. the density function of the sum X + Y is the convolution of the individual density
functions.

20 II. R  M C 

2.1.4 Individual distributions

Geometric distribution:

pn = p(1 − p)n , FX(n) = 1 − (1−p)n+1 (2.38)

Mean value and variance:

EX =
1−p

p
, V(X) =

1−p
p2 . (2.39)

Binomial distribution B(N, p):

P(n|N) =
(
N
n

)
pn(1 − p)N−n (2.40)

Mean value and variance:

EX = Np , V(X) = Np(1−p) . (2.41)

Poisson distribution:

P(n) =
λne−λ

n!
. (2.42)

Mean value and variance:
EX = λ , V(X) = λ . (2.43)

Interpretation: radioactive decay, decay rate γ [decays/s], time interval ∆t, parameter
λ = α∆t. Probability of getting n decays during the time interval is P(n).

Uniform distribution U(x0,w):

FX(x) =


0 x < x0

x − x0

w
x0 ≤ x ≤ x0+w

1 x > x0+w

, fX(x) =


0 x < x0

1
w

x0 ≤ x ≤ x0+w

0 x > x0+w

(2.44)

Normal distribution N(µ, σ):

FX(x) =
1 + erf

x−µ
√

2σ
2

, fX(x) =
1

2πσ2 e−(x−µ)2/(2σ2) , (2.45)

where erf z = (2/
√
π)

∫ z

0
e−ζ2 dζ is the error function.

Mean value and variance:
EX = µ , V(X) = σ2 . (2.46)

2.2. Generating random numbers with a given distribution 21

Exponential distribution:

FX(x) = 1 − e−αx , fX(x) = αe−αx . (2.47)

Mean value and variance:

EX =
1
α
, V(X) =

1
α2 . (2.48)

Interpretation: radioactive decay, α is the decay rate; x is waiting time for first decay event.

Gamma distribution:

FX(x) =
γ(β, αx)
(β−1)!

(incomplete gamma function) , fX(x) =
xβ−1αβe−αx

(β−1)!
. (2.49)

Mean value and variance:

EX =
1
α
, V(X) =

1
α2 . (2.50)

Interpretation: radioactive decay, decay rate α; x is waiting time for βth decay event.

Cauchy distribution:

FX(x) =
1
2
+

1
π

arctan
x
b
, fX(x) =

b
π

1
b2 + x2 . (2.51)

Mean value undefined, variance∞.

2.2 Generating random numbers with a given distribution

2.2.1 Congruential generators

Consider the following recursion:

xn+1 = 3 xn mod 7 . (2.52)

Start e.g. with x1 = 5, then xn follows the sequence 5, 1, 3, 2, 6, 4, 5, . . ., i.e. goes through
all values (except 0, which is absorbing) before cycling. Divide xn by 7 to get sequence
0.71, 0.14, 0.43, 0.29, 0.86, 0.57, 0.71,

On the other hand,
xn+1 = 3 xn mod 7 . (2.53)

has two shorter cycles: 5, 3, 6, 5, . . . and 2, 4, 1, 2, . . .

22 II. R  M C 

Linear congruential method:

xn+1 = a xn + c mod m . (2.54)

To get realizations of Y ∼ U(0, 1), use yn = xn/m.

Important to find good values of A, c and m — and test the (pseudo) random numbers.
E.g. Parker & Miller: a = 75 = 16808, c = 0, m = 231

− 1 = 2147483647 (will cycle after at
most 2× 109 iterations).

2.2.2 Other distributions

Transformation method

Methods like the congruential generators yield uniformly distributed random numbers on
(0, 1). We often need to map these to random numbers with other distributions – so what
happens to the probability density function if we transform a random variable X 7→ g(X)?

Let Y = g(X), and assume g(x) is monotonically non-decreasing, then

P(X < x) = P[g(X) < g(x)] , (2.55)

or
FX(x) = FY(g(x)) = FY(y) , (2.56)

where y ≡ g(x).

Note that taking the derivative w.r.t. x, we get

fX(x) = fY[g(x)] g′(x) = fY(y)
dy
dx

, (2.57)

which can be written as
fX(x) dx = fY(y) dy . (2.58)

Going back to Eq. (2.56), we now replace X by Y ∼ U(0, 1) and Y by X:

FU(u) = FX[g(u)] , (2.59)

and since FU(u) = u, we find
FX(x) = u , (2.60)

or
x = g(u) = F−1

X (u) , (2.61)

provided we can invert the function FX(·).

We thus get the following method to construct random numbers X with the density
function fX(x):

2.2. Generating random numbers with a given distribution 23

1. Integrate fX(x) to get

FX(x) =

x∫
−∞

fX(x′) dx′

2. Obtain uniformly distributed random numbers ui

3. Solve the equation
FX(xi) = ui . (2.62)

for xi (i.e. invert FX). The values xi will sample the desired distribution.

Example: To construct random numbers X that are exponentially distributed,

fX(x) = α e−αx x ≥ 0 , (2.63)

we find
FX(x) = 1 − e−αx x ≥ 0 , (2.64)

and thus
1 − e−αxi = ui , (2.65)

which leads to
xi = −

1
α

ln(1 − ui) . (2.66)

If ui is uniformly distributed over [0, 1], then 1 − ui is as well, so instead of Eq. (2.67), we
can use the slightly simpler

xi = −
1
α

ln ũi , (2.67)

where ũi are uniformly distributed random numbers.

Can we use this to construct normally distributed random numbers? Only if we are willing
to somehow numerically calculate the inverse error function. But there is a better method,
that allows us to construct two normally distributed random variables at once.

Consider X ∼ N(0, 1) and Y ∼ N(0, 1), which are supposed to be independent. The joint
probability density is

fX,Y(x, y) = fX(x) fY(y) =
1

2π
e−(x2+y2)/2 =

1
2π

e−r2/2 , (2.68)

where r =
√

x2 + y2. For R ≡
√

X2 + Y2, we find the probability distribution function

FR(r) =
∫

r′≤r

fX,Y(x, y) dx′ dy′ =
1

2π

∫
r′≤r

e−r′2/2 dx′ dy′ . (2.69)

Switching to polar coordinates, we have dx dy = dϕ r dr and thus

FR(r) = P(R ≤ r) =
1

2π

2π∫
0

dϕ′
r∫

0

dr′ r′ e−r′2/2 = 1 − e−r2/2 . (2.70)

24 II. R  M C 

Setting FR(ri) = 1 − FU(ui) = 1 − ui as above2, we get

ri =
√
−2 ln ui , (2.71)

so we now know how to construct random numbers R. To get X and Y, we have to multiply
R with a random phase factor,

X = R cosΦ , Y = R sinΦ , (2.72)

whereΦ ∼ U(0, 2π). One can verify that the resulting random numbers X,Y are statistically
independent and are normally distributed.

Thus, to construct pairs of normally distributed random numbers, we have the following
procedure:

1. Obtain a pair (ui, vi) of uniformly distributed random numbers;

2. calculate
ri =

√
−2 ln ui , ϕi = 2πvi ; (2.73)

3. the normally distributed variables are

xi = ri cosϕi , yi = ri sinϕi . (2.74)

Acceptance-rejection method

Consider a distribution with a density f (x) that lives only on the interval [0, 1]:

x

0 1

f (x)

A

accept

reject

Pick a point (xi, yi) in that rectangle at random:

X ∼ U(0, 1) , Y ∼ U(0,A) . (2.75)

2We could use FR(ri) = FU(ui) = ui, but again 1 −U has the same characteristics as U

2.2. Generating random numbers with a given distribution 25

If we now discard all pairs (xi, yi) that are above the curve y = f (x), then the probability of
a certain x value will be equal to f (x). Formally, this becomes

P[x<X<x+dx |Y< f (X)] = f (x) dx . (2.76)

If we use the method in this form, we may have to discard a lot of points, but the method
can be somewhat generalized: consider a distribution with density f (x) and introduce a
comparison function ϕ(x) with f (x) ≤ ϕ(x) everywhere (in the motivation section above,
ϕ(x) was just a constant function).

x

0 1

f (x)

ϕ(x)

accept

re
je

ct

If we can choose random points (xi, yi) that are below ϕ(x), but have constant density in x
and y, we can discard all points with f (xi) < yi < ϕ(xi) and find that the x coordinates of the
remaining points again have probability density function f (x). So how can we distribute
the points evenly below the curve ϕ(x)?

If we use X ∼ U(0, 1) and for each xi choose a yi distributed according to Y ∼ U[0, ϕ(xi)],
then we will have too many points where ϕ(x) is small, and too few where it is large. We
must compensate for this by having a density in X that is proportional to ϕ(x). This is our
original problem, but now for the comparison function ϕ(x), which we can control. If we
chooseϕ(x) such that it can be analytically integrated and the integral can be inverted, then
we can use the transformation method to get random numbers xi distributed according to
the probability density function

fX(x) =
ϕ(x)

∞∫
−∞

ϕ(x′) dx′
. (2.77)

This leads us to the following recipe.

1. Choose a comparison function ϕ(x) that satisfies

ϕ(x) ≥ f (x) (2.78)

26 II. R  M C 

everywhere, but such that it can be analytically integrated:

Φ̃(x) =

x∫
−∞

ϕ(x′) dx′

∞∫
−∞

ϕ(x′) dx′
(2.79)

and Φ̃ can be analytically inverted;

2. obtain a pair (ui, vi) of uniformly distributed random numbers;

3. calculate
xi = Φ̃

−1(ui) , and yi = vi ϕ(xi) . (2.80)

4. accept xi as next random number if

yi < f (xi) , (2.81)

otherwise reject it and start again.

Note1: The efficiency of our acceptance-rejection method (i.e. the fraction of accepted
points) is

η =

∞∫
−∞

f (x) dx

∞∫
−∞

ϕ(x) dx
=

1
∞∫
−∞

ϕ(x) dx
. (2.82)

It depends on how close the comparison function is to the function f (x). The constant
function which we used in the motivation above is often quite inefficient.

Note2: For many density functions, the Cauchy profile

ϕ(x) =
A b
π

1
b2 + (x−x0)2 (2.83)

is a good choice as comparison function. In this case, one has

Φ̃(x) =
1
2
+

1
π

arctan
x−x0

b
, (2.84)

and
Φ̃−1(u) = x0 + b tan[π(u − 1/2)] . (2.85)

2.2. Generating random numbers with a given distribution 27

2.2.3 Superposition method

If the density fX(x) is the linear superposition of (a finite number of or infinitely many)
density functions for which we can generate random numbers (e.g. because we know the
distribution functions and can invert them),

fX(x) =
∑

k

ck fXk(x) , where
∑

k

ck = 1 , (2.86)

then we can generate random numbers X as follows.

1. Obtain two uniformly distributed random numbers u, v.

2. Use u to draw a random number k with probability P(K=k) = ck (i.e. treat ck as
probabilities of a discrete random variable, see § 2.2.4 below)

3. Use v to generate a random number Y according to the distribution for Xk.

To see that this indeed yields random numbers with the desired distribution, we note that

∞∑
k=0

ck P(X≤x |K=k) =
∞∑

k=0

P(K=k) P(X≤x |K=k) = P(X≤x) (2.87)

because of the total probability theorem Eq. (2.35).

Example: To generate a random number x for the distribution with

fX(x) =
1
3
+

2
3

2 x , 0 ≤ x ≤ 1 , (2.88)

we

1. draw u and v,

2. use u to choose which distribution to choose: if u ≤ 1/3, we choose a random number
with uniform distribution, fX(x) = 1, else one with linear distribution fX(x) = 2x,

3. and use v to draw the final number. To draw a uniformly distributed number, we
just use x = v. For the linear distribution, we have FX(x) = x2, thus F−1

X (y) =
√

y, and
thus x =

√
v.

Written even more as a recipe:

1. Draw u, v ∼ U(0, 1).

2. 
x = v if u ≤

1
3

x =
√

v if u >
1
3

(2.89)

This method is very powerful, as it works for an arbitrary linear superposition.

28 II. R  M C 

2.2.4 Discrete distributions

If we have a discrete distribution with probabilities pk and the distribution function

FX(k) =
k∑

m=0

pk , (2.90)

the following yields the desired random numbers: Obtain a uniformly distributed number
u, then

if u ≤ FX(0) choose x = 0 , (2.91)
if FX(0) < u ≤ FX(1) choose x = 1 , (2.92)
if FX(1) < u ≤ FX(2) choose x = 2 , (2.93)
if FX(2) < u ≤ FX(3) choose x = 3 , (2.94)

...

This works because the probability that u is in a certain interval is equal to the length of
this interval, and the length of the kth interval is FX(k) − FX(k−1) = pk.

Example: For the binomial distribution B(N, p) with N = 5, p=1/3, we have

p0 =
32
243

, p1 =
80
243

, p2 =
80
243

, p3 =
40
243

, p4 =
10
243

, p5 =
1

243
, (2.95)

and, calculating the partial sums,

FX(0) =
32

243
,FX(1) =

112
243

,FX(2) =
192
243

,FX(3) =
231
243

,FX(4) =
242
243

,FX(5) =
243
243

. (2.96)

Thus,

if u ≤
32

243
choose x = 0 , (2.97)

if
32

243
< u ≤

112
243

choose x = 1 , (2.98)

if
112
243

< u ≤
192
243

choose x = 2 , (2.99)

if
192
243

< u ≤
231
243

choose x = 3 , (2.100)

if
231
243

< u ≤
242
243

choose x = 4 , (2.101)

if
242
243

< u ≤
243
243

choose x = 5 . (2.102)

2.3. The central limit theorem 29

2.3 The central limit theorem

The sum
∑

Xi of N independent random variables has the probability density function⊗
i fXi(x), i.e. the convolution of the individual PDFs. As convolutions are best dealt with

in Fourier space, let us introduce the Fourier transform of the probability density function,

χX(t) ≡

∞∫
−∞

eitx fX(x) dx , (2.103)

which is called the characteristic function of X. and can be written as

χ(t) = EeitX . (2.104)

The latter form works also for discrete distributions.

If χ is sufficiently smooth (i.e. if fX decays sufficiently fast), we can expand lnχ in a Taylor
series:

lnχ(t) =
∞∑

n=0

κn
(it)n

n!
. (2.105)

Here κn are called the cumulants of the distribution, and are related to the central moments

µ ≡ EX , (2.106)
µ2 ≡ E(X − µ)2 , (2.107)
µ3 ≡ E(X − µ)3 , (2.108)
µ4 ≡ E(X − µ)4 , (2.109)
. . .

via

κ0 = 0 , (2.110)
κ1 = µ , (2.111)
κ2 = µ2 , (2.112)
κ3 = µ3 , (2.113)
κ4 = µ4 − 3µ2

2 , (2.114)
. . .

30 II. R  M C 

For a normal distributionN(µ, σ), we get

χ(t) =
1

√
2πσ2

∞∫
−∞

e−
(x−µ)2

2σ2 eitx dx (2.115)

=
1

√
2πσ2

∞∫
−∞

e−
x2
−2µx+µ2

−2σ2ixt
2σ2 dx (2.116)

=
1

√
2πσ2

∞∫
−∞

e−
[x−(µ+σ2it)]2x−2µσ2it+σ2t

2σ2 dx (2.117)

= eitµ− σ
2t
2 , (2.118)

or

lnχ(t) = µit −
σ2t
2
. (2.119)

Hence,

κ0 = 0 , (2.120)
κ1 = µ , (2.121)
κ2 = σ2 , (2.122)
κ3 = 0 , (2.123)
κ4 = 0 , (2.124)
. . .

If we add two random variables, Z = X + Y, the resulting PDF is

fZ(z) = fX ⊗ fY =

∞∫
−∞

fX(x) fY(z−x) dx . (2.125)

The resulting characteristic function is simply

χZ(t) = χX(t)χY(t) . (2.126)

If we divide a random variable X by a number n,

Y =
X
n
, (2.127)

the PDF becomes 3

fY(y) = n fX(ny) , (2.129)
3 This follows from

fX(x) dx = fY(y) dy . (2.128)

2.3. The central limit theorem 31

and the resulting characteristic function is

χY(t) =
∫

eity n fX(ny) dy =
∫

ei(t/n)x fX(x) dx = χX(t/n) . (2.130)

So what is the characteristic function of the arithmetic mean of n random variables

Y =
1
n

n∑
k=1

Xk ? (2.131)

According to Eqs. (2.126) and (2.130), we need to take the product and scale the argument:

χY(t) =
n∏

k=1

χk(t/n) . (2.132)

We can write this as

lnχY(t) =
n∑

k=1

lnχk(t/n) , (2.133)

or, for the cumulants,

κ(Y)
0 = 0 , (2.134)

κ(Y)
1 =

∑
κ(i)

1

n
, (2.135)

κ(Y)
2 =

∑
κ(i)

2

n2 , (2.136)

κ(Y)
3 =

∑
κ(i)

3

n3 , (2.137)
. . .

In terms of the moments, this means that

µ(Y) =

∑
µ(i)

1

n
=

〈
µ
〉
, (2.138)

µ(Y)
2 =

∑
µ(i)

2

n2 =

〈
µ2

〉
n

, (2.139)

µ(Y)
3 =

∑
µ(i)

3

n3 =

〈
µ3

〉
n2 , (2.140)

. . . (2.141)

If n is large, we can neglect the moments higher than 2 and find that we asymptotically
get a normal distribution with

µ =
〈
µ
〉
, σ =

√〈
µ2

〉
n

. (2.142)

At the same time, the skewness γ1 ≡ µ3/σ3 and higher cumulants that the normal distribu-
tion does not have tend to zero. This statement is called central limit theorem.

32 II. R  M C 

Example 1: Averaging exponentially distributed random variables. For the exponential
distribution X ∼ E(α), we have

χX(t) =

∞∫
x=0

αe−αteitx dx =
1

1 −
it
α

. (2.143)

Thus,

lnχX(t) = − ln
(
1 −

it
α

)
=

it
α
+

(it)2

2α2 + . . . (2.144)

and
κ1 =

1
α
, κ2 =

1
α2 , κ3 =

2
α3 , . . . (2.145)

Averaging n independent exponentially distributed random variables, we get

lnχY(t) = −n ln
(
1 −

it
αn

)
=

it
α
+

(it)2

2α2n
+

(it)3

3α2n2 + . . . (2.146)

and thus
µ =

1
α
, σ =

1
α
√

n
, µ3 =

2
α3n2 , . . . (2.147)

Thus for large n, the distribution of Y approaches a normal distribution:

X ∼ N
(

1
α
,

1
α
√

n

)
for n→∞ (2.148)

The skewness goes like

γ1 =
2
√

n
→ 0 for n→∞ , (2.149)

implying that the distribution gets more symmetric with increasing n.

Example 2: Averaging Cauchy-distributed random variables. For the Cauchy distribu-
tion, we have

χX(t) =

∞∫
x=0

b
π

1
b2 + x2 eitx dx = e−b|t| . (2.150)

Thus,
lnχX(t) = −b|t| . (2.151)

For the average Y of n Cauchy-distributed variables, we find

lnχY(t) = −nb
∣∣∣∣∣ t
n

∣∣∣∣∣ = −b|t| (2.152)

— this is unchanged. Conclusion: averaging Cauchy-distributed random variables is use-
less, as it does not change (an in particular not narrow) the distribution.

Reason: None of the cumulants/moments κi or µi exists, because lnχ has no continuous
derivatives (which in turn reflects the slow decay of fX(x) for |x| → ∞). Thus, the central
limit theorem does not hold for this distribution.

2.4. Monte Carlo integration 33

2.4 Monte Carlo integration

Monte Carlo integration is the approximate calculation of (mostly multi-dimensional) inte-
grals by averaging over a large sample of random numbers.

Example: Let xi, i = 1, . . .N be exponentially distributed random numbers. Then the expec-
tation value E sin X is given by

E sin X =

∞∫
x=0

sin x e−x dx , (2.153)

which can be approximated by the average

E sin X ≈ 〈sin xi〉 ≡

∑N
i=1 sin xi

N
. (2.154)

The standard deviation of the error will be

δ =
σ(xi)
√

N−1
=

√〈
sin x2

i

〉
− 〈sin xi〉

2

N − 1
, (2.155)

thus we can write

∞∫
x=0

sin x e−x dx ≈ 〈sin xi〉 ±

√〈
sin x2

i

〉
− 〈sin xi〉

2

N − 1
. (2.156)

Comparing with the exact value I = 1/2, we find values and errors as in Table 2.1.

Table 2.1: Example of Monte Carlo integration of I ≡
∫
∞

x=0 sin x e−x dx. The errors are for the values found in
this experiment and will be different in a different realization.

N Monte Carlo approximant IN error

10 0.46591 -0.017
100 0.52414 0.012

1 000 0.50023 0.00012
10 000 0.50525 0.0026

100 000 0.49846 -0.00077
1 000 000 0.49937 -0.00031

10 000 000 0.49976 -0.00012

As we can see, the error decreases quite slowly, and we know that it goes like δ ∼ 1/N1/2.
Using the trapezoid rule, we would have an error that scales like 1/N2, and other rules
like high-order Newton–Cotes, Romberg or Gauss–Laguerre would give yet much faster
convergence.

34 II. R  M C 

However, if we have a 10-dimensional integral, then the trapezoid rule (applied to each
of the 10 directions) will have an error that scales like 1/N2

x = N1/5, where N is the total
number of points. The error of the Monte Carlo method, on the other hand, will still
go like 1/N1/2 and thus decline considerably faster. The cost will be comparable for a
4-dimensional integral. Even for higher-order methods there will be a dimensionality d
starting from which Monte Carlo integration is cheaper.

Another, often more important reason for using Monte Carlo integration for multi-
dimensional integrals is the fact that it is easily copes with integrals over complicated
domains, while higher-order methods are essentially restricted to Cartesian products. For
example to calculate the volume of the intersection of a cone with a sphere,

V ≡
∫

x2+y2<z2

(x−1)2+y2+z2<4

dV (2.157)

we can uniformly sample random points in a box that encloses the volume in question
([−1, 2]× [−2, 2]× [−2, 2] will do), and then count the points inside the volume. The fraction
of positive counts will be approximately equal to the ratio of V to the volume of the whole
box. This leads us to the following code:

Monte Carlo 1
real, dimension(3) :: a

real, dimension(2) :: xr=(/-1,2/), yr=(/-2,2/), zr=(/-2,2/)

real :: Lx=xr(2)-xr(1), Ly=yr(2)-yr(1), Lz=zr(2)-zr(1)

integer :: count

!

count = 0

do i=1,N

call random_number(a) ! [x,y,z]

x = xr(1)+a(1)*Lx; y = yr(1)+a(2)*Ly; z = zr(1)+a(3)*Lz

if ((x**2+yy**2 < z**2) .and. ((x-1)**2+y**2+z**2 < 4)) then

count = count+1

endif

enddo

print*, ’Volume ~ ’, count*Lx*Ly*Lz/N

Calculating the integral

V ≡
∫

x2+y2<z2, (x−1)2+y2+z2<4

f (x) dV (2.158)

is almost as simple:
Monte Carlo 2

real, dimension(3) :: a

real, dimension(2) :: xr=(/-1,2/), yr=(/-2,2/), zr=(/-2,2/)

real :: Lx=xr(2)-xr(1), Ly=yr(2)-yr(1), Lz=zr(2)-zr(1)

2.4. Monte Carlo integration 35

real :: sum

!

sum = 0.

do i=1,N

call random_number(a) ! [x,y,z]

x = xr(1)+a(1)*Lx; y = yr(1)+a(2)*Ly; z = zr(1)+a(3)*Lz

if ((x**2+yy**2 < z**2) .and. ((x-1)**2+y**2+z**2 < 4)) then

sum = sum + f(x,y,z)

endif

enddo

print*, ’Integral ~ ’, sum*Lx*Ly*Lz/N

Basic theorem of Monte Carlo integration:

∫
g(x) f (x) dxd

≈
〈
g(xi)

〉
±

√〈
g(xi)2〉

−
〈
g(xi)

〉2

N − 1
, (2.159)

where xi are d-dimensional random vectors, distributed according to the PDE fX(x) = f (x).

Note: One can attempt to minimize the variance of g(xi) by absorbing some of g’s vari-
ability into f , thus mapping

f 7→ f̃ , g 7→ g̃ (2.160)

with g̃ f̃ = g f . This method is called importance sampling, because it basically works by
sampling more points where the integrand g f is larger.

In the extreme case where g̃ = 1, we would get
〈
g2〉
−

〈
g
〉2
= 0, and thus have no error at

all. However, the resulting integral ∫
V

f̃ (x) dxd = 1 (2.161)

does not tell us anything new, and in fact we have now replaced the problem of calculating
the integral

∫
g(x) f (x) dxd by that of generating random numbers xi that are distributed

according to f̃ (x) = g(x) f (x) overV, which is a more difficult problem.

Nevertheless, a transformation of type (2.160) can sometimes dramatically reduce the
statistical error.

2.4.1 Error estimates

While it is sometimes possible to directly estimate the statistical error of a Monte Carlo
result, this is by no means the rule. It is however quite simple to estimate the error based
on a number N of independent realizations of the Monte Carlo process. Since Monte Carlo

36 II. R  M C 

Random

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Quasi−random

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.1: Random numbers vs. “quasi-random” numbers. The coordinates (xi, yi) of the points on the left
are independent, uniformly distributed random numbers. The points on the right are “quasi-random”
points (which are in fact completely deterministic), generated by the ‘sobseq’ routine from [NR90]. In both
cases, 1024 points are shown.

simulations require a large number of realizations anyway, this simply means that we
group our realizations in N sets.

Within each set, we determine the average γi ≡
〈
g
〉

i , i=1, . . . ,N of the quantity we are
calculating, and calculate the average and standard deviation

γ =

N∑
i=1
γi

N
, σ2 =

N∑
i=1

(γi − γ)2

N−1
. (2.162)

The Monte Carlo estimate of
〈
g
〉

is then〈
g
〉
= γ ±

σ
√

N
(2.163)

In practise, a value of 10..20 for N gives reasonably good results.

2.4.2 Quasi-random numbers

The fact that the error of a Monte-Carlo integral goes like 1/
√

N follows directly from
Eq. (2.23). Using independent random numbers, we cannot obtain a better scaling.

A similar method called “Quasi-Monte Carlo method” utilizes a deterministic sequence
of points. These points form “quasi-random” sequences and ‘avoid each other’ and thus
sample the hypercube more efficiently, as can be seen in Fig. ??. The scaling of the error for
Quasi-Monte Carlo integration is δ ∼ lnd N/N (and thus close to 1/N) for the integration of
smooth functions over the full d-dimensional hypercube.

2.5. The Metropolis et al algorithm 37

If we integrate over a subvolume of the hypercube, the error is be dominated by the points
near the (hyper)surface of that subvolume, which ‘by chance’ happen to be inside (and
thus counted) or outside (and thus discarded). The thickness of that layer around the
hypersurface is ∼ N1/d (this is the typical separation of points in one direction, here in the
direction normal to the hypersurface), and this is equal to the fraction of points that are
close to the boundary (only the direction normal to the hypersurface is selective, the other
directions are irrelevant for whether a point is a boundary point).

The number of boundary points is thus ∼ N1/d N = N(d−1)/d. According to the statistical
‘square root law’, this leads to statistical fluctuations of order ∼ N(d−1)/2d, which contribute
to the integral (after dividing by N) as 1/N(d+1)/2d. This exponent is shown in Table 2.2
for different dimensionalities d. For d = 3, it is still markedly different from the scaling
exponent 1/2 for the Monte Carlo method, thus Quasi-Monte Carlo will be worth while in
3 dimensions.

Table 2.2: Scaling exponent over dimensionality d for Quasi-Monte Carlo integration over a volume that is
not a Cartesian product.

d −
d+1
2d

num. value

1 0 0.000
2 −1/4 −0.250
3 −1/3 −0.333
4 −3/8 −0.375
5 −2/5 −0.400
6 −5/12 −0.417
8 −7/16 −0.438

10 −9/20 −0.450
15 −7/15 −0.467
20 −19/40 −0.475

2.5 The Metropolis et al algorithm

Metropolis et al have come up with an algorithm for Monte Carlo methods that is very
popular ever since. It provides a method to generate random numbers by a random process
(‘random walk’) that are asymptotically distributed according to any given distribution.
Asymptotic here means that the process needs some time to equilibrate before the numbers
have the desired distribution. Another constraint to keep in mind is the fact that the random
numbers are typically strongly correlated. For many applications this is not important,
because one needs to average over many correlation ‘times’ anyway.

2.5.1 Random processes

A discrete random process is a sequence of random variables X1,X2,

38 II. R  M C 

For a Markovian random process (‘Markov chain’) the distribution of Xk+1 is completely
determined by Xk (Markov chains are ‘memory-less’). The dependence on the previous
state is characterized by the transition probability

P(x→ x′) = P(Xn+1=x′ |Xn=x) (2.164)

(for a continuous distribution4), or

P(i→ k) = P(Xn+1=k |Xn=i) (2.165)

(for a discrete one).

Under certain, not very restrictive conditions, a Markov process leads to a stationary
distribution, which is not modified by P(i→ k). A straight-forward way of enforcing that
the stationary distribution is f (i) is to require detailed balance:

f (i) P(i→ k) = f (k) P(k→ i) , (2.166)

which can also be written as
P(i→ k)
P(k→ i)

=
f (k)
f (i)

. (2.167)

Since both transition probabilities have to be ≤ 1, we can choose

P(i→ k) =


1 , f (k) ≥ f (i) ,

f (k)
f (i)

, f (k) < f (i) .
(2.168)

“Example”: In thermodynamics, we are often interested in partition sums of the form

E f =

∑
i

f (Ei) e−βEi∑
i

e−βEi
(2.169)

(or corresponding integrals), where β ≡ 1/(kBT).

To obtain a series of energies Ei with the Boltzmann distribution pi ∼ e−βEi , we can use
Eq. (2.168) and get

P(Ei → Ek) =

1 , Ek ≤ Ei ,

e−β(Ek−Ei) , Ek > Ei .
(2.170)

To evaluate the average (2.169), we can thus proceed as follows:

1. Start with an arbitrary state i.

4 This is a very imprecise notation, since for a continuous distribution P(X = x0) is always zero (X has a
finite probability to be in an interval, but if the interval length tends to zero, the probability does, too). But
it should be clear enough how to make sense of it when needed.

2.5. The Metropolis et al algorithm 39

2. Consider switching to another state k which would lead to an energy difference
∆E ≡ Ek−Ei:

if ∆E ≤ 0 switch unconditionally;

if ∆E > 0 draw random number u, then

 if u < e−β∆E switch;
if u ≥ e−β∆E do not switch;

(2.171)

This decision procedure can be compactly expressed as:

Switch if u < e−β∆E , (2.172)

as u will never exceed 1.

3. Repeat step 2 many times.

4. Evaluate E f as
〈

fi
〉

over the states i,

(a) generously discarding the first states it took for the process to reach equilibrium;

(b) making sure that you do count ‘new’ states even if they resulted from not
switching — if you do not switch from a state, its probability is accordingly
higher.

2.5.2 Ising model of a ferromagnet

The Ising model considers an array of spins si = ±1 that only interact with their nearest
neighbours. The total energy is given by

E = −ε
∑

neighbours (i,k)

sisk , (2.173)

where ε is a positive energy and summation is over all pairs of nearest neighbours (such that
each combination of neighbours is counted only once). The total energy can be minimized
by aligning all spins parallel with each other, which results in an energy −ε per spin.

The one-dimensional Ising model shows smooth temperature dependence (the
magnetization decreases, and thermal energy increases, continuously with in-
creasing temperature).

For the one-dimensional Ising model, we find

E = −ε
∑

i

sisi+1 . (2.174)

In two or more dimensions, however, the Ising model exhibits a phase transition:
There is a critical temperature where magnetization goes to zero and the heat
capacity is infinitely large (because of latent heat).

40 II. R  M C 

One way of doing a Monte Carlo simulation to get the thermodynamical properties of the
Ising model is to choose a spin position at random and then decide whether to flip it or
not. The energy difference when flipping the ith spin from si to −si is

∆E = 2 ε si

∑
k(i)

sk , (2.175)

where the sum is over all spins k(i) that are nearest neighbours to i. In one dimension, this
becomes

∆E = 2 ε si(si−1 + si+1) . (2.176)

The heat capacity can be calculated from

cv ∝
1
N

(
ε

kBT

)2 (〈
E2

〉
− 〈E〉2

)
(2.177)

and the magnetic susceptibility from

χ ∝
1
N

ε
kBT

(〈
M2

〉
− 〈M〉2

)
, (2.178)

where M ∝
∑

Si is the total magnetization.

Note 1: The right hand sides of Eqs. (2.177) are essentially the variances of E and M. As
cv and χ diverge at a phase transition, total energy and magnetization will be subject to
huge fluctuations close to the critical temperature.

Note 2: In a finite system (N < ∞), the phase transition will be smoothed out. It only
occurs in the limit N→∞.

Note 3: The normalization factor 1/Z ≡ 1/
∑

e−βEi never needs to be evaluated.

2.5.3 Quantum Monte Carlo integration

Monte Carlo methods have various applications in quantum mechanics. One of them is
the variational quantum Monte Carlo method for finding the ground state of many-particle
problems.

For an n-particle problem, the energy of a state ψ(x) =
〈
x|ψ

〉
is

E =

∫
ψ∗(x)Ĥψ(x) dx3n∫
ψ∗(x)ψ(x) dx3n

(2.179)

=

∫
ψ∗(x)ψ(x)∫
ψ∗(x)ψ(x) dx3n

1
ψ(x)

Ĥψ(x) dx3n (2.180)

=

∫
f (x)

1
ψ(x)

Ĥψ(x) dx3n , (2.181)

2.5. The Metropolis et al algorithm 41

where x is a 3n-dimensional position vector (3 dimensions for each particle) and Ĥ is the
Hamiltonian.

f (x) ≡
ψ∗(x)ψ(x)∫
ψ∗(x)ψ(x) dx3n

(2.182)

is a (joint) probability density.

Eq. (2.181) has the form (2.159) of a multidimensional Monte Carlo integral and can thus
be evaluated using Monte Carlo integration.

To generate the random positions X, we can use the Metropolis et al algorithm, starting with
random coordinates X0 and then accepting or rejecting a change ∆X in all six coordinates
(alternatively, one could do one coordinate at a time).

After discarding a certain number of initial values, we calculate the average of

Ẽi =
1

ψ(xi)
Ĥψ(xi) , (2.183)

which will converge to the value of the integral (2.179).

Again, the normalization factor 1/
∫
|ψ(x)|2 dx3n is never needed, so we can work with

unnormalized trial wave functions ψ(r) here.

Note 1: As a rule of thumb, an acceptance ratio of ≈ 0.5 is optimal (some say 0.2 has
advantages); we can tune the amplitude of ∆X to achieve this. [We cannot do that for the
Ising model where phase space is discrete.]

Note 2: As always with the Metropolis et al algorithm, the random positions X are
strongly correlated. This does not affect the precision of the integral, provided we integrate
over many correlation times. However, simple estimates of the statistical error will be far
too optimistic, since effectively the number of independent values will not be equal to N
(the number of Metropolis steps), but N/Ncorr, where Ncorr is the correlation ‘time’.

The method described in Sec. 2.4.1 will however work, provided the size of the sets is
considerably larger than the correlation ‘time’; this will always be the case if you have
good statistics and the number of sets is reasonably small.

Example: Consider the one-dimensional potential well

U(x) =

∞ , x < 0 ,
αx , x ≥ 0 .

(2.184)

The stationary Schrödinger equation for the wave function ψ(x) is

−
~2

2m
ψ′′ + αxψ = Eψ , x ≥ 0 , (2.185)

42 II. R  M C 

with the boundary conditions ψ(0) = ψ(∞) = 0. Here ~ = h/2π is Planck’s constant, m the
particle mass, and E is the energy of the eigenstate ψ(x).

Using appropriate units, this can be written as

Ĥψ ≡ −ψ′′ + xψ = Eψ , x ≥ 0 . (2.186)

For an arbitrary ‘trial’ wave function Φ(x), the energy E0 of the ground state satisfies the
inequality

E0 ≤

∫
Φ∗(x)ĤΦ(x) dx∫
Φ∗(x)Φ(x) dx

, (2.187)

and equality holds only if Φ(x) ∝ ψ0(x) is the correct eigenfunction.

Using the trial function

Φ(x) =

 Axe−kx , x ≥ 0
0 , x < 0 ,

(2.188)

we can use the Metropolis et al algorithm to approximate the integral for any given value
of k. Varying k and choosing the minimum value obtained, we get an approximation for
E0.

To apply the algorithm, we write the right-hand-side of Eq. (2.187) as

E =
∫

Φ∗(x)Φ(x)∫
Φ∗(x)Φ(x) dx

1
Φ(x)

ĤΦ(x) dx ≡
∫

f (x)g(x) dx , (2.189)

and find that

f (x) ∝ Φ(x)2 =

 x2e−2kx , x ≥ 0
0 , x < 0

(2.190)

and

g(x) ≡
1
x

ekx
(
−∂2

x + x
)

xe−kx =
1
x

ekx
(
−k2x + 2k + x2

)
e−kx = −k2 +

2k
x
+ x . (2.191)

We sample random positions according to f (x) by doing a random walk in the following
way. We draw a displacement vector ∆x with components uniformly distributed5 over
the interval L/2,L/2, evaluate f (x) at the new position xk = xi + ∆x, and accept xk with
probability

pacc = min
(
1,

f (xk)
f (xi)

)
, (2.192)

i.e. draw a uniformly distributed random number u and

5We could choose other distributions, e.g. ∆X ∼ N(0,L), but uniformly distributed numbers are gener-
ated fastest.

Note: It turns out that distributions with non-vanishing expectation value give wrong results here. Even
if E∆X = 0, the results seem to be offwhen the probability density function of the distribution is not sym-
metric. This is quite surprising and I do not understand this behaviour.

2.5. The Metropolis et al algorithm 43

accept xk if u <
f (xk)
f (xi)

.

If the acceptance ratio racc is considerably below 0.5, we decrease the interval length L, if it
is larger, we increase L until we get r ≈ 0.5. Averaging g(x) over the positions xi (counting
the same position several times if a shift was rejected), we get

E ≈
〈
g(xi)

〉
. (2.193)

44 II. R  M C 

Chapter 3

Optimization

We cover only one optimization method that follows as a corollary from Monte Carlo
simulations.

3.1 Simulated annealing

There are many different methods for optimizing different functions. If the function de-
pends on a large number of variables, simulated annealing can be used to find an approxi-
mation to the optimum. [Genetic algorithms occupy a similar ecological niche, but they are
more complex and a bit tedious to apply for optimizing continuous functions].

The idea of simulated annealing is borrowed from what happens when steel (essentially
an alloy of iron and carbon) cools down. When the cooling process is fast, only very
small crystallites are formed and the material is malleable. To harden steel, it is annealed,
i.e. heated again for some time and slowly cooled. This allows larger crystals to grow, which
make the material elastic. If one anneals too much (too long and slowly), the crystals grow
too large, and the material becomes brittle.

Energetically, the formation of large crystals is profitable, i.e. it brings the system closer
to the global energy minimum. The small crystallites on the other hand create many local
energy minima, and annealing is a way to use thermal fluctuations to “kick” the system
out of these local minima and approach the global minimum.

The same ideas can be applied to get close to the global minimum of a function of many
variables. As an example, consider the travelling salesman problem: A salesman needs to
travel from city C1 to N other cities C2, . . .CN and back to C1. He knows the distance
between any pair of cities and wants to minimize the total distance

D ≡
∑

i

|x(Ci) − x(Ci+1)| (3.1)

he has to travel. This optimization problem is Np-complete, which means it cannot exactly
be solved in reasonable time if N is large.

45

46 III. O

A simulated-annealing approach (to find an approximation to the global optimum, not the
optimum itself) would look like this:

1. Start with an arbitrary cyclic sequence of cities (e.g. sort alphabetically).

2. Choose a “temperature” T and use the Metropolis algorithm to exchange, or not
exchange, a randomly picked pair of cities. The acceptance probability is

pacc = e−β(Dnew−Dold) , (3.2)

where β = 1/T. Repeat this m times.

3. According to a schedule, slowly “cool” the system by lowering temperature T. A
commonly used schedule is linear in “time”,

T(t) = T0

(
1 −

t
∆t

)
, (3.3)

where t is a measure of the number of tries.

4. Once temperature is very small or zero, we have an approximation to the global
minimum.

Note 1: Slower cooling will (in general) get you closer to the global minimum.

Note 2: Before starting a simulated-annealing scheme, you should estimate which tem-
perature values are relevant. For example, if distances between cities for the travelling-
salesman problem vary by a few thousand kilometres, your initial ‘temperature’ should
be at least that large.

On the other hand, once your ‘temperature’ is 10 times smaller than a typical ∆D, the
probability of accepting a change towards larger ‘energy’ is exp(−∆D/T) ≈ 1/20 000, so
you will see very few changes below this temperature. A good strategy is to monitor the
number of changes for a faster (superficial) cooling schedule and use the results to fix the
endpoints of a slower (more in-depth) schedule.

Chapter 4

Partial differential equations

4.1 Classification

Partial differential equations are differential equations for functions f (x1, x2, . . . , xn) of sev-
eral variables. For linear equations of second order in two independent variables,

a
∂2 f
∂x2 + 2b

∂2 f
∂x∂y

+ c
∂2 f
∂x2 + d

∂ f
∂x
+ e
∂ f
∂y
+ g f + h = 0 (4.1)

a useful classification is based on the discriminant b2
− ac of the quadratic form F(x, y) ≡

ax2 + 2bxy + cy2:

b2
− ac < 0: Elliptic equation.

Example: Poisson equation

∂2 f
∂x2 +

∂2 f
∂y

2

= −h(x, y) . (4.2)

Typically steady (time-independent) problems like steady-state heat conduction,
elasticity (of thin strings and membranes), stationary wave or Schrödinger equa-
tions.

b2
− ac < 0: Parabolic equation.

Example: (Time-dependent) heat conduction equation

∂2T
∂t
− χ

∂2 f
∂x

2

= q(x, t) . (4.3)

Typically time-dependent problems with damping like diffusion and heat conduction
or time dependent Schrödinger equation.

b2
− ac < 0: Hyperbolic equation.

Example: (Time-dependent) heat conduction equation

∂2T
∂t
− χ

∂2 f
∂x

2

= q(x, t) . (4.4)

47

48 IV. P  

Typically time-dependent problems with wave propagation like advection prob-
lems, equations for sound waves, electromagnetic waves (possibly with damping:
telegrapher’s equation).

4.2 Finite differences

Consider a smooth function f (x) sampled on an equidistant grid xk, which gives the values
fk = f (xk).1 We define the following finite difference operators:

shift operator (T± f)k = fk±1 , (4.5)
forward difference operator (∆ f)k = fk+1 − fk , (4.6)
central difference operator (δ f)k = fk+1/2 − fk−1/2 , (4.7)
backward difference operator (∇ f)k = fk − fk−1 , (4.8)

averaging operator (M f)k ≡ fk =
fk+1/2 + fk−1/2

2
. (4.9)

There are many interrelations between these operators, e.g.

T− = T−1
+ , (4.10)

∆ = T+ − 1 y T+ = 1 + ∆ , (4.11)
∇ = 1 − T− y T− = 1 − ∇ , (4.12)

δ = T1/2
+ − T−1/2

+ , (4.13)

M = T1/2
+ + T−1/2

+ . (4.14)

Powers of these operators are obtained by iteratively applying them several times.
Schematically:

x2 f2

∆ f1

x1 f1 ∆2 f0

∆ f0

x0 f0

x1 f1

δ f1/2

x0 f0 δ2 f0

δ f−1/2

x−1 f−1

xn fn

∇ fn

xn−1 fn−1 ∇
2 fn

∇ fn−1

xn−2 fn−2

We can define arbitrary analytical functions of the operators via power series, e.g.

e∆ ≡ 1 + ∆ +
∆2

2!
+
∆3

3!
+ . . . (4.15)

Once we accept the idea that functions can be applied to operators, we can e.g. invert
Eq. (4.13) using the relation

t1/2
− t−1/2

2
=

e(1/2) ln t
− e−(1/2) ln t

2
= sinh

ln t
2
,

1Even if the values xk are not equidistant, the y can often be written as a smooth function x(ξk) of an
equidistant variable ξ. In that case, fk = f (x(ξk)) is obtained from a smooth function ξ 7→ f (x(ξ)) on an
equidistant grid ξk, so the following still applies, albeit with some modification.

4.2. Finite differences 49

and find

δ = 2 sinh
ln T+

2
, (4.16)

which can immediately be inverted to

ln T+ = 2 arsinh
δ
2
, (4.17)

a result we are going to use later. Similarly,

M = cosh
ln T+

2
=

√
1 + sinh2 ln T+

2
=

√
1 +

δ2

4
. (4.18)

Newton’s interpolation formula: Interpolation can be understood as a fractional shift op-
eration of the knwon data:

f (x) = Tt
+ f0 = (1 + ∆)t f0 =

n∑
k=0

(
t
k

)
∆k f0 + Rn (4.19)

= f0 +

(
t
1

)
∆ f0 +

(
t
2

)
∆2 f0 + . . . +

(
t
n

)
∆n f0 + Rn , t :=

x−x0

h
(4.20)

(4.21)

Remainder term

Rn =

(
t

n+1

)
hn+1 f (n+1)(x0+nϑh) , 0 < ϑ < 1 . (4.22)

Stirling’s interpolation formula:

f (t) = f0 + t δ f
±

1
2
+

t2

2!
δ2 f0 +

t(t2
−1)

3!
δ3 f
±

1
2
+

t2(t2
−1)

4!
δ4 f0 +

+
t(t2
−1)(t2

−4)
5!

δ5 f
±

1
2
+ . . . (4.23)

= f0 +

(
t
1

) (
δ f
±

1
2
+

t
2
δ2 f0

)
+

(
t+1

3

) (
δ3 f
±

1
2
+

t
4
δ4 f0

)
+ (4.24)

+

(
t+1

5

) (
δ5 f
±

1
2
+

t
6
δ6 f0

)
+ + . . . (4.25)

with

δk f
±

1
2

:=
δk f 1

2
+ δk f

−
1
2

2
(4.26)

50 IV. P  

Example: Interpolate the following function values:

x = -1 0 1 2

f (x) = -7 1 -1 -7

The finite-difference tableau becomes

k xk fk ∆ f ∆2 f ∆3 f

2 2 -7
-6

1 1 -1 -4
-2 6

0 0 1 -10
8

-1 -1 -7

We have t = x + 1, and Newton’s formula becomes

f = f0 +

(
t
1

)
∆ f0 +

(
t
2

)
∆2 f0 +

(
t
3

)
∆3 f0 (4.27)

= −7 + 8t − 10
t(t−1)

2
+ 6

t(t−1)(t−2)
6

(4.28)

= −7 + 8(x+1) − 5(x+1)x + (x+1)x(x−1) (4.29)
= x3

− 5x2 + 2x + 1 . (4.30)

Taylor’s theorem: We introduce the derivative operator D with

D f0 ≡ f ′0 . (4.31)

If f (x) is sufficiently smooth, it has a Taylor series

f (x0 + h) =
∞∑
j=0

h j f (j)

j!
, (4.32)

which in terms of our operators becomes

T+ f0 =

∞∑
j=0

(hD) j

j!
f0 = ehD f0 . (4.33)

Thus,

T+ = ehD , (4.34)

which can (formally) be inverted as

hD = ln T+ = ln(1 + ∆) = − ln(1 − ∇) = 2 arsinh
δ
2
. (4.35)

4.2. Finite differences 51

We can use this and similar formulæ to express the derivative operator as a power series
in ∆, ∇ or δ:

hD = ln(1 + ∆) =
∆

1
−
∆2

2
+
∆3

3
− + . . . (4.36)

= − ln(1 − ∇) =
∇

1
+
∇

2

2
+
∇

3

3
+ (4.37)

For the central differences, a few manipulations [I1996] result in2

hD = M
(
1 +

δ2

4

)−1/2

2 arsinh
δ
2

(4.39)

= Mδ

 ∞∑
j=0

(−1) j

(
2 j
j

) (
δ2

16

) j

 ∞∑

j=0

(−1) j

2 j+1

(
2 j
j

) (
δ2

16

) j
 (4.40)

= M
(
δ −

δ3

6
+
δ5

30
−
δ7

140
+
δ9

630
− + . . .

)
, (4.41)

More explicitly, these operator identities read

h f ′0 = ∆ f0 −
∆2 f0

2
+
∆3 f0

3
−
∆4 f0

4
+ − . . . (4.42)

= ∇ f0 +
∇

2 f0

2
+
∇

3 f0

3
+
∇

4 f0

4
+ . . . (4.43)

= δ f0 −
δ3 f0

6
+
δ5 f0

30
−
δ7 f0

140
+ − (4.44)

For the second-order derivatives, we get

h2D2 = ln2(1 + ∆) = ln2(1 − ∇) = 4 arsinh2 δ
2
, (4.45)

and thus (eventually)

h2 f ′′0 = ∆2 f0 − ∆
3 f0 +

11
12
∆4 f0 −

5
6
∆5 f0 + − . . . (4.46)

= ∇
2 f0 + ∇

3 f0 +
11
12
∇

4 f0 +
5
6
∇

5 f0 + . . . (4.47)

= δ2 f0 −
δ4 f0

12
+
δ6 f0

90
−
δ8 f0

560
+ − (4.48)

2 The reason this expression is so complex is that we need an expansion in Mδ f0,Mδ3 f0,Mδ5 f0, . . . (be-
cause these operators live on the main grid, just as fi), while the straight-forward Taylor expansion yields

hD = 2 arsinh
δ
2
= δ

∞∑
j=0

(−1) j

2 j + 1

(
2 j
j

) (
δ2

16

) j

= δ −
δ3

24
+

3
640

δ5
− + . . . , (4.38)

and thus leads to an expansion in δ f0, δ3 f0, . . ., all terms of which are defined on the shifted (half-index)
grid.

52 IV. P  

Using the function values instead of the difference operators, these formulæ (truncated at
different levels) become

f ′0 =
− f−1 + f−1

2 h
+O

(
h2

)
(4.49)

f ′0 =
f−2 − 8 f−1 + 8 f1 − f2

12 h
+O

(
h4

)
(4.50)

f ′0 =
− f−3 + 9 f−2 − 45 f−1 + 45 f1 − 9 f2 + f3

60 h
+O

(
h6

)
(4.51)

and

f ′′0 =
f−1 − 2 f0 + f−1

h2 +O
(
h2

)
(4.52)

f ′′0 =
− f−2 + 16 f−1 − 30 f0 + 16 f1 − f2

12 h2 +O
(
h4

)
(4.53)

f ′′0 =
2 f−3 − 27 f−2 + 270 f−1 − 490 f0 + 270 f1 − 27 f2 + f3

180 h2 +O
(
h6

)
(4.54)

4.3 Elliptic problems

Consider the Poisson equation

∆ f ≡
∂2 f
∂x2 +

∂2 f
∂y2 = g(x, y) . (4.55)

Introducing an equidistant grid

xk = x0 + kh , yk = y0 + kh (4.56)

(with identical grid spacing for x and y), we have a two-dimensional array fkl ≡ f (xk, yl).
To second order in δx and δy, we can approximate the second derivatives by(

∂2 f
∂x2

)
kl
=

fk+1,l − 2 fk,l + fk−1,l

h2 +O
(
h2

)
, (4.57)(

∂2 f
∂y2

)
kl
=

fk,l+1 − 2 fk,l + fk,l−1

h2 +O
(
h2

)
, (4.58)

(4.59)

and thus

(∆ f)kl =
fk+1,l + fk−1,l + fk,l+1 + fk,l−1 − 4 fk,l

h2 +O
(
h2

)
. (4.60)

fk−1,l
fk+1,

fk,l−1

fk,l+1

4.3. Elliptic problems 53

Using this, we can write a finite-difference version of the Poisson equation in the form

fk+1,l + fk−1,l + fk,l+1 + fk,l−1 − 4 fk,l

h2 = gkl . (4.61)

Solving this equation, we will get an approximation to the correct f (xk, yl) that improves
if we increase the number of grid points (i.e. decrease h).

Note: The linear system (4.61) gives rise to a sparse matrix, where most elements are zero
(each line of the matrix has only 5 non-zero elements). Solving this with a general-purpose
method like full LU decomposition would be an extreme waste of computing time (as
we would mostly multiply some numbers by zero), however there are special methods to
solve such systems, typically by iteration (see below).

4.3.1 Fourier method

In Fourier space, the Poisson equation (4.55) becomes an algebraic equation:

− k2 f̃ (k) = g̃(k) . (4.62)

Here

f̃ (k) = F { f (x); k} =
1

2π

∞∫
−∞

f (x) e−ik·x dx2 (4.63)

is the forward Fourier transform, with

f (x) = F −1
{ f̃ (k); x} =

∞∫
−∞

f̃ (k) eik·x dk2 (4.64)

being the corresponding backward transform.

Equation (4.62) yields simply

f̃ (k) = −
g̃(k)
k2 , (4.65)

or

f (x) = −F −1

{
F {g(x),k}

k2 , x
}
. (4.66)

For k ≡ |k| → 0 there is an apparent problem because we divide by k2, but k = 0 simply
represents a constant term in f (x), and as Eq. (4.55) is not affected by a constant shift in
f (x), we can choose f̃ (0) = 0 (and re-add a constant in the end, if necessary).

If we solve the Poisson equation not in an infinite volume, but in a finite box with periodic
boundary conditions, the backward Fourier integral (4.64) turns into a Fourier series, while
integration in the forward transform (4.63) is only over the volume of the box.

54 IV. P  

In numerical mathematics, however, even the positions x in configuration space are dis-
crete, as we discretize the box volume by introducing an equidistant grid. In that case, we
are left with the discrete Fourier transform

f̃ (k jl) = F { f (xmn); k jl} =
∑
m,n

f (xmn) e−ik jl·xmn =
∑
m,n

f (xmn) e
−2πi

(
jm
Nx
+

ln
Ny

)
(4.67)

f (xmn) = F −1
{ f̃ (k jl); xmn} =

1
N

∑
j,l

f (k jl) ek jl·xmn =
1
N

∑
j,l

f (k jl) e
2πi

(
jm
Nx
+

ln
Ny

)
, (4.68)

where δkx = 2π/Lx, δky = 2π/Ly, and summation is over all points in the box.

To approximately solve the Poisson equation on the grid points, we use Eq. (4.66) and
avoid division by zero for k jl = 0 as discussed above.

We thus have the following recipe:

1. Choose an equidistant grid xmn to cover the box; make sure it is compatible with the
periodic boundary conditions (no point counted twice).

2. Calculate g(xmn) on the grid.

3. Calculate the Fourier transform g̃(k jl)

4. Use

f̃ (k jl) =

 −
g̃(k jl)

k2 , k , 0

0 , k = 0
(4.69)

to calculate f̃ (k jl).

5. Transform back to get f (x jl).

How do we calculate the discrete Fourier transform? Many software packages (and IDL)
provide the Fast Fourier Transform (FFT). This is a very efficient method, particularly if the
number of points Nx and Ny are powers of 2. In two dimensions, the operation count of
the Fast Fourier Transform is

nops ∝ Nx ln Nx ×Ny ln Ny ∝ N ln2 N , (4.70)

where N = NxNy is the total number of points; this is almost linear in N, as the logarithm
grows very slowly.

Note 1: For Dirichlet boundary conditions f |∂V = 0, one uses the Fourier sine transform
instead of the complex Fourier transform. Similarly, von Neumann boundary conditions
require the Fourier cosine transform.

Note 2: The Fourier method can only be applied to equations with constant coefficients.
For that case, it is one of the most efficient methods to solve elliptic PDEs.

4.3. Elliptic problems 55

4.3.2 Multigrid method

A very efficient way of solving the discretized Poisson equation is the multigrid method
which, together with the main grid, introduces a number of coarser grids, typically with
two, four, etc. times the grid spacing in each direction.

Consider the linear system (4.61). Under certain conditions (which are typically met), it
can be solved iteratively using

fk,l =
fk+1,l + fk−1,l + fk,l+1 + fk,l−1 − h2gkl

4
. (4.71)

There are two variants of this iteration scheme. For Jacobi iteration, at a given stage the
right hand sides are evaluated for all grid points and only then the values fkl are updated.
Convergence is two times faster with Gauss–Seidel iteration, where Eq. (4.71) is evaluated
for each point in sequence, using the latest updated values on the right hand side. Gauss–
Seidel iteration also requires only half the memory of Jacobi iteration and has the important
advantage of damping the highest wave number. This is the scheme we will consider here.

The iterative solution of Eq. (4.71) is quite slow. While the small scales (∼ δx) are quickly
converging, it is the largest scales that take very long to reach their ‘equilibrium’ values
due to the (local) iteration. For these large scales, however, one would not need the fine
grid, and on a coarser grid they would converge much faster. Hence the idea of multigrid
methods: Solve the problem iteratively on grids of different resolution by

1. coarse-graining (downsampling) using the restriction matrix R:

rcoarse = Rrfine , (4.72)

and

2. fine-graining (refining = interpolation), using the prolongation matrix P:

δffine = Pδfcoarse . (4.73)

A popular choice for the restriction matrix is represented by

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

This matrix acts as a lowpass filter: signals at the Nyquist frequency fNy,fine of the fine
grid are completely filtered out, while signals at fNy,coarse are damped as little as possible.

56 IV. P  

This is crucial for the scheme to be efficient, as any contribution of fNy,fine would only be
misinterpreted as a larger frequency on the coarser grid (aliasing).

The refinement is done using linear interpolation.

To see how the method works, consider the differential equation

L f = g , (4.74)

which, discretized at the grid spacing h, becomes

Lh fh = gh . (4.75)

If we have an approximate solution f̃h, we can introduce the error

δ fh = fh − f̃h , (4.76)

and find
− Lhδ fh = Lh f̃h − Lh fh = Lh f̃h − gh , (4.77)

i.e.
− Lhδ fh = rh , (4.78)

where rh ≡ Lh f̃h − gh is the residual, which is a measure of how well our approximate
solution f̃ solves the original problem.

Coarse-graining rh to the coarser grid with spacing H = 2h,

rH = Rrh , (4.79)

we arrive at
− LHδ fH = rH , (4.80)

which we solve (this is faster than on the finer grid) to obtain δ fH.

Then we fine-grain (interpolate) δ fH onto the finer grid,

δ f̃h = Pδ fH , (4.81)

and calculate the new value of f̃h as

f̃ new
h = f̃h + δ f̃h . (4.82)

Formulated as a recipe, this two-grid method reads:

0. Start with a guess f̃h on the fine grid (e.g. choose 0).

1. Calculate the residual rh = Lh f̃h − gh, and coarse-grain it, rH = Rrh.

2. Solve LH δ fH = −rH on the coarser grid, fine-grain the correction, δ f̃h = Pδ fH, and
add it to the initial guess. f̃ new

h = f̃h + δ f̃h.

3. Do one Gauss–Seidel iteration.

4. Continue with 1 until δ f̃h is small enough.

To turn this from a two- into a multi-grid method, we simply use another two-grid scheme
for obtaining δ fH at stage 2, etc. The best way to code a multigrid method is obviously
recursive.

4.4. Parabolic problems 57

Note 1: The numerical cost for the multigrid method is roughly ∝ N = NxNy and thus
comparable to Fourier methods. However, multigrid methods can be used for equations
with variable coefficients and also for nonlinear equations.

Note 2: The multigrid scheme thus described is referred to as ‘V’ cycle (the name should
be evident from the scheme below). There are other popular cycles like the ‘W’ cycle.

h

2h

4h

8h

The ‘V’ cycle.

h

2h

4h

8h

A ‘W’ cycle (many other W cycles exist).

4.4 Parabolic problems

The heat conduction equation
∂T
∂t
= χ

∂2T
∂x2 (4.83)

is the prototype of a parabolic differential equation. To solve it numerically, we need to
discretize in space and time:

Tl
k ≡ T(xk, tl) . (4.84)

Starting from an initial condition Tl
k, which we assume to be known everywhere, we need

to construct the solution at the next time, Tl+1
k .

4.4.1 Explicit scheme

A simple scheme is obtained from the discretization

Tl+1
k − Tl

k

δt
= χ

Tl
k−1 − 2Tl

k + Tl
k+1

δx2 . (4.85)

We can explicitly solve for the unknown Tl+1
k ,

Tl+1
k = Tl

k +
χ δt
δx2

(
Tl

k−1 − 2Tl
k + Tl

k+1

)
= CTl

k−1 + (1−2C)Tl
k + CTl

k+1 , (4.86)

58 IV. P  

where

Cdif ≡
χδt
δx2 (4.87)

is the (diffusive) Courant number; we will mostly omit the index ‘dif’ and refer to C.

According to the discretizations used, this explicit scheme is of first order in time (Euler
stepping), and of second order in space (centred second derivative).

4.4.2 Fully implicit scheme

Another scheme is obtained from the discretization

Tl+1
k − Tl

k

δt
= χ

Tl+1
k−1 − 2Tl+1

k + Tl+1
k+1

δx2 . (4.88)

This time, we have a coupled system of equations for the unknown Tl+1
k ,

− CTl+1
k−1 + (1 + 2C)Tl+1

k − CTl+1
k+1 = Tl

k (4.89)

Again, this fully implicit scheme is of first order in time (Euler stepping), and of second
order in space (centred second derivative).

Note: The system (4.89) is a tridiagonal system and can thus be solved much more
efficiently than a general linear system.

Nevertheless, it takes more numerical effort than the explicit scheme and (like any implicit
scheme) has the major disadvantage that it leads to nonlinear systems of equations if the
heat conduction equation is nonlinear (i.e. if χ depends on temperature T).

4.4.3 General implicit and Crank-Nicholson schemes

We can mix the explicit and the fully implicit schemes with a weighting factor 0 ≤ q ≤ 1 to
obtain the general implicit scheme:

Tl+1
k − Tl

k

δt
=

χ
δx2

[
q
(
Tl+1

k−1 − 2Tl+1
k + Tl+1

k+1

)
+ (1−q)

(
Tl

k−1 − 2Tl
k + Tl

k+1

)]
. (4.90)

The special cases q = 0 and q = 1 correspond to the explicit and fully implicit schemes,
respectively.

The linear system takes the form

− qCTl+1
k−1 + (1+2qC)Tl+1

k − qCTl+1
k+1 = (1−q)CTl

k−1 + [1 − 2(1−q)C]Tl
k + (1−q)CTl

k+1 , (4.91)

which is again a tridiagonal system.

4.4. Parabolic problems 59

The general implicit scheme is typically of first order in time and of second order in space,
but in the special case q = 1/2, the temporal order is 2. This scheme,

−
C

2
Tl+1

k−1 + (1+C)Tl+1
k −

C

2
Tl+1

k+1 =
C

2
Tl

k−1 + (1−C)Tl
k +
C

2
Tl

k+1 , (4.92)

is called Crank–Nicholson scheme.

4.4.4 Stability

If we apply the explicit scheme with a relatively large time step, we find that oscillatory
perturbations grow rapidly and make the numerical solution quickly useless. On the other
hand, for small δt the solution is very well behaved and settles to the physical steady state.

To assess the stability of a scheme and predict the useful range of δt, we use von Neumann
stability analysis: Assume that at time tl, temperature T varies harmonically in x,

Tl
j = eikx j . (4.93)

For each of these Fourier modes (characterized by the wave number k), investigate the
amplitude factor A given by

Tl+1
j = ATl

j . (4.94)

If |A| < 1, the Fourier mode is stable, otherwise it is unstable. If at least one Fourier mode
is unstable, the scheme is unstable, too, as any weak perturbation containing that Fourier
mode will grow exponentially and make the solution unusable.

What is the range of wave numbers that are meaningful on a grid of spacing δx? The lowest
wave number is 0, while the highest wave number corresponds to a zigzag profile with
a period of 2 δx, thus k ≤ 2π/(2δx) = π/δx ≡ kNy.3 Here kNy ≡ π/δx is called the Nyquist
wave number. For a finite number of grid points, the wave numbers will be discrete, with a
spacing δk = 2π/Lx, where Lx = Nx δx is the interval length. By increasing Nx, we can thus
decrease δk as far as we want, hence we will treat k as a continuous variable.

Von Neumann stability analysis:

Assume
Tl

j = eikx j . (4.96)

Consider the wave length k to be a continuous number in the interval

0 ≤ k ≤ kNy , (4.97)

Analyze amplification factor A: if A ≤ 1∀k, scheme is stable, otherwise unstable.

3 The fact that kNy is the highest wave number that can be distinguished on a grid of spacing δx can also
be seen from

ei(kNy+k′)xl = (−1)leik′xl = ei(−kNy+k′)xl , (4.95)

which implies that the wave number kNy+k′ is equivalent to −kNy+k′.

60 IV. P  

Often we will work with the dimensionless wave number

κ ≡ k δx , (4.98)

for which κNy = π.

Let us now see when the explicit scheme is stable. Plugging Eq. (4.93) into (4.86), we find

Aeikx = eikx
[
Ce−ikδx + (1−2C) + Ceikδx

]
, (4.99)

or
A = 1 − 2C + 2C cos kδx = 1 − 2C(1− cos δx) . (4.100)

As 1− cos ξ ≤ 0, the amplitude factor can never exceed 1. However, instability occurs also
if A < −1. The cos function takes its minimum of −1 for kδx = π, which will thus be the
least stable Fourier mode. The stability threshold is thus where

− 1 = 1 − 2C[1 − (−1)] , (4.101)

or C =
1
2

.

We thus find that the explicit scheme (4.86) is stable only if the Courant criterion

C ≤
1
2

(4.102)

is met. In practise,C should be chosen well below that threshold. If the Courant criterion is
violated, the smallest scales are the most unstable ones. Also, because A < −1, the unstable
modes will change sign from one time step to the next.

Interpretation of Courant criterion: “Information must not travel more than half a grid
cell in one time step.” (will become clearer for hyperbolic problems).

Next, let us look at the stability of the fully implicit scheme. Here we find

A
[
−Ce−ikδx + 1+2C − Ceikδx

]
= 1 , (4.103)

or
A =

1
1 + 2C(1− cos kδx)

. (4.104)

One can easily see that
1

1 + 4C
≤ A ≤ 1 , (4.105)

and thus the fully implicit scheme is always stable.

Interpretation: No restriction on information propagation as solving the tridiagonal sys-
tem propagates information across the whole grid.

4.4. Parabolic problems 61

Note 1: As A is strictly positive, there is no change of sign for any of the Fourier modes.

Note 2: Stability does not necessarily imply correctness. If we choose a very large time
step (large Courant number), we will get an evolution that is considerably different from
the exact one. However, the dissipative nature of parabolic problems leads to one finite
state (thermal equilibrium) and this often makes the qualitative behaviour similar to the
exact solution even when δt is large.

Finally, let us look at the stability of the general implicit scheme. Here,

A =
1 − (1−q)2C(1− cos kδx)

1 + q2C(1− cos kδx)
, (4.106)

and in particular

A =
1 − C(1− cos kδx)
1 + C(1− cos kδx)

, (4.107)

for the Crank–Nicholson scheme, and one can show that the general implicit scheme is
unconditionally stable for q ≥ 1/2 ,

only stable if C ≤
1

2(1−2q)
for q < 1/2 .

(4.108)

The Crank–Nicholson scheme is thus unconditionally stable.4

4.4.5 Schemes to avoid: the Dufort–Frankel scheme; (in)consistency

There is a great deal of arbitrariness in choosing the discretizations for solving partial
differential equations, and seemingly small changes to the scheme can make a huge dif-
ference.

As an example, consider the plausible scheme

Tl+1
k − Tl−1

k

2δt
= χ

Tl
k−1 − 2Tl

k + Tl
k+1

δx2 , (4.109)

which is nice because it is of second order in time. Unfortunately, this scheme turns out to
be unconditionally unstable.

The reason for the instability is related to the fact that even and odd time steps are
somewhat decoupled (in the sense that if the left-hand side is used to step from one odd
time step to the following one, the right-hand side represents only the even time step in
between).

4 This result holds for linear stability for constant thermal diffusivity χ. For more complicated settings,
the fact that the Crank–Nicholson scheme is just on the border between conditional and unconditional
stability may lead to unsatisfactory stability properties. In that case, a more implicit scheme (q > 1/2) may
be needed. But you should not sacrifice second-order accuracy in time unless you are sure you need to.

62 IV. P  

To mitigate this, we can replace Tl
k on the right-hand side by the average (Tl−1

k + Tl+1
k)/2:

Tl+1
k − Tl−1

k

2δt
= χ

Tl
k−1 − (Tl−1

k + Tl+1
k) + Tl

k+1

δx2 , (4.110)

which can be written as

Tl+1
k =

CTl
k−1 +

(1
2
− C

)
Tl−1

k + CTl
k+1

1
2
+ C

. (4.111)

Von Neumann Stability analysis gives

A =
2C cos kδx ±

√
1 − 4C2 sin2 kδx

1 + 2C
, (4.112)

which turns out to always satisfy |A| ≤ 1.

However, Eq. (4.111) is an explicit equation for Tl+1
k . The only additional price we have to

pay compared to our explicit scheme is the fact that we need to retain two levels of values
(Tl

k and Tl−1
k), but then we are rewarded with second-order accuracy in time, and with

absolute stability.

So it looks like we have found an explicit scheme that is unconditionally stable! Un-
fortunately, there is a downside to the Dufort–Frankel scheme that makes me strongly
recommend against its use: it solves the wrong equations. To see this, let us expand T
around xk and tl up to second order:

Tl
k±1 = T ± ∂xTδx +

∂2
xT
2
δx2 +O

(
δx2

)
, (4.113)

Tl±1
k = T ± ∂tTδt +

∂2
t T
2
δt2 +O

(
δt3

)
, (4.114)

where we have dropped the indices ()l
k for brevity. Equation (4.111) then becomes

2∂tT δt
2δt

= χ
2T + ∂2

xTδx2
− (2T + ∂2

t Tδt2)
δx2 +O

(
δt2

)
+O

(
δx2

)
+O

(
δt4/δx2

)
. (4.115)

Ignoring the terms that get small when δt ∼ δx→ 0, we are left with

∂tT = χ∂2
xT −

χ δt2

δx2 ∂
2
t T (4.116)

This equation is of completely different type than the heat-conduction equation (it is the
telegrapher’s equation, which is hyperbolic), and certainly not what we wanted to solve in
the first place.

We thus find that the Dufort–Frankel scheme – although constructed as a discretization of
the heat conduction equation – in fact represents the discretization of a different equation.
The discretization leading to the scheme was not consistent.

4.4. Parabolic problems 63

If we insist on using the Dufort–Frankel scheme for the heat conduction equation, we will
need to make the additional term small. In order to achieve this, δt must decrease faster
than δx, and we essentially have the requirement δt � χδx2 or C � 1. The unconditional
stability of the scheme does not allow us to choose a larger time step than for other explicit
schemes.

To gain some peace of mind, let us verify the consistency of our general implicit scheme.
Here we get

∂tTδt +
∂2

t T
2
δt2

δt
= χ

∂2
xTδx2 +O

(
δx2δt

)
+O

(
δx4

)
δx2 , (4.117)

and hence
∂tT = χ∂2

xT +O (δt) +O
(
δx2

)
. (4.118)

In the limit of both time step and grid spacing tending to zero, we obtain exactly the heat
conduction equation, thus the general implicit scheme is consistent, together with all of its
special cases like the explicit scheme, the fully implicit scheme, and the Crank–Nicholson
scheme.

4.4.6 Boundary conditions

A Dirichlet boundary condition T0 = a(t) translates into the first line of
1 0 0 0 . . . 0

−qC 1+2qC −qC 0 . . . 0

0 −qC 1+2qC −qC . . . 0
...

.




Tl+1

0

Tl+1
1

Tl+1
2

...


=


a(tl+1)

(1−q)CTl
0 + [1−2(1−q)C]T1 + (1−q)CTl

2

(1−q)CTl
1 + [1−2(1−q)C]T2 + (1−q)CTl

3

...


(4.119)

A von Neumann boundary condition (∂T/∂x)0 = b(t) can be discretized as

T1 − T0

δx
= b(t) (4.120)

with first-order accuracy.5 This maps to the first line of
1 −1 0 0 . . . 0

−qC 1+2qC −qC 0 . . . 0

0 −qC 1+2qC −qC . . . 0
...

.




Tl+1

0

Tl+1
1

Tl+1
2

...


=


−δx b(tl+1)

(1−q)CTl
0 + [1−2(1−q)C]T1 + (1−q)CTl

2

(1−q)CTl
1 + [1−2(1−q)C]T2 + (1−q)CTl

3

...


(4.121)

5 It can be shown that an N − 1th order boundary scheme is consistent with an Nth order scheme for
interior points. Thus, the Crank–Nicholson scheme together with a first-order boundary scheme will still
be of second order in space and time.

64 IV. P  

4.4.7 Non-homogeneous equation

It is pretty straight-forward to adapt our schemes for the non-homogeneous equation

∂T
∂t
− χ

∂2T
∂x2 = h(x, t) . (4.122)

The general implicit scheme takes the form

− qCTl+1
k−1 + (1+2qC)Tl+1

k − qCTl+1
k+1 = (1−q)CTl

k−1 + [1 − 2(1−q)C]Tl
k + (1−q)CTl

k+1

+ δt h(xk, tl+1/2) , (4.123)

which is still a tridiagonal system as before.

There is some freedom in the choice of the time argument for h, and we could just as
well have chosen h(xk, tl) or h(xk, tl+1). The present choice [to evaluate h(x, t) at the time
tl+1/2 ≡ tl + δt/2] has the advantage that the Crank–Nicholson scheme

−
C

2
Tl+1

k−1 + (1+C)Tl+1
k −

C

2
Tl+1

k+1 =
C

2
Tl

k−1 + (1−C)Tl
k +
C

2
Tl

k+1 + δt h(xk, tl+1/2) , (4.124)

will still be of second order in time.

4.4.8 Higher-order explicit schemes

The accuracy of the schemes used so far was second order in space and first or second
order in time. Many people are content with this – but they should not, as it is relatively
simple to use higher-order schemes and increase accuracy. One reason not to do so may be
the better stability properties of implicit methods, which are more difficult to implement
in higher order. Another complication with higher-order methods are often the boundary
conditions, although most of this can be dealt with elegantly using ghost zones (see 4.5.2).
But for explicit time stepping with periodic boundary conditions there is definitively no
excuse for not using high-order schemes.

As high-order methods are going to be our favourite method for solving hyperbolic equa-
tions (which we will in fact turn into parabolic ones), we leave the discussion for Sec-
tion 4.5.2 below.

4.5 Hyperbolic problems

The standard example of a hyperbolic equation is the wave equation

∂2 f
∂t2 = c2∂

2 f
∂x2 . (4.125)

It describes waves moving with phase velocity c in both directions and has the general
solution

f (x, t) = ϕr(x−ct) + ϕl(x+ct) . (4.126)

4.5. Hyperbolic problems 65

The wave operator can be factored as(
∂
∂t
− c

∂
∂x

) (
∂
∂t
+ c

∂
∂x

)
f = 0 , (4.127)

and if we are only interested in signals propagating to the right, we can drop the first
differential operator and get (

∂
∂t
+ c

∂
∂x

)
f = 0 , (4.128)

or
∂ f
∂t
= −u

∂ f
∂x

, (4.129)

where we have replaced the symbol c with u. This equation has the general solution

f (x, t) = ϕr(x−ut) . (4.130)

The advection equation (4.129) is not a hyperbolic equation, as it is only of first order.
Nevertheless it will be our prototype for this section, as it has all the properties of hyperbolic
systems that are relevant for us. Also, note that Eq. (4.127) implies that the wave equation
can be written as a system of two coupled advection equations

∂ f
∂t
= u

∂g
∂x

, (4.131)

∂g
∂t
= u

∂ f
∂x

. (4.132)

4.5.1 Low-order schemes

A straight-forward discretization of the advection equation

∂ f
∂t
= −u

∂ f
∂x

, (4.133)

is
f l+1
k − f l

k

δt
= −u

f l
k+1 − f l

k−1

2δx
, (4.134)

which is first-order accurate in time and second-order accurate in space. The scheme turns
out to be consistent.

Von Neumann stability analysis gives

A − 1
δt
= −u

i sin kδx
δx

, or A = 1 − iCadv sin kδx , (4.135)

where
Cadv ≡

uδt
δx

(4.136)

66 IV. P  

is the advective Courant number; we will mostly omit the index ‘adv’, unless this can lead
to confusion with the diffusive Courant number.

The modulus of the amplification factor A is thus

|A|2 = 1 + C2 sin2 kδx ≥ 1 , (4.137)

and thus, unfortunately, this scheme is unconditionally unstable. As [NR77] put it:

“The resulting finite-difference approximation [. . .] is called the FTCS representation
(Forward Time Centred Space) [. . .] It’s a fine example of an algorithm that is easy to
derive, takes little storage, and executes quickly. Too bad it doesn’t work!”

1.00002

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.0

−0.5

0.0

0.5

1.0

10.0003

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.0

−0.5

0.0

0.5

1.0

Figure 4.1: The O
(
δt, δx2

)
(first-order time step, second-order spatial derivatives) scheme applied to the

advection problem (4.129) with u = 1 and periodic boundary conditions. The time step is extremely small
(δt = 0.0005). The solid line shows the exact solution (identical to the initial profile), while the crosses and
dashed line show the numerical solution. Left: t=1 (i.e. the pattern has travelled once through the interval
[0, 1]. Right: t=10 (the pattern has travelled ten times through the interval).

The instability is illustrated in Figure 4.1.

The Lax scheme

Replacing f l
k by (f l

k−1+ f l
k+1)/2 on the left-hand side of Eq. (4.134), we obtain the Lax scheme

f l+1
k −

f l
k−1+ f l

k+1

2
δt

= −u
f l
k+1 − f l

k−1

2δx
, (4.138)

or

f l+1
k =

f l
k−1+ f l

k+1

2
− C

f l
k+1 − f l

k−1

2
. (4.139)

The amplification factor is
A = cos kδx − iC sin kδx , (4.140)

and
|A|2 = cos2 kδx + C2 sin2 kδx = 1 + (C2

−1) sin2 kδx . (4.141)

4.5. Hyperbolic problems 67

The Lax scheme is thus conditionally stable, and the stability criterion is the Courant–
Friedrichs–Lewy stability criterion (or simply Courant criterion)

C ≤ 1 , (4.142)

which holds in a similar form for most or all explicit schemes.

Interpretation of the Courant criterion: the scheme is only stable if information (which
travels at speed u) crosses no more than one cell per time step. This seems pretty intuitive,
as during one step, our scheme, which extends just one point to the left and one to the
right, does not have access to information from further away. On the other hand, we should
remember that von Neumann stability analysis is base on the global Fourier modes and
their evolution is governed by the phase velocity. Thus, the propagation of information
(which propagates at the group velocity) does probably not give a consistent interpretation.

Why is the Lax scheme stable (provided δt satisfies the Courant condition), while (4.134)
is not? The answer becomes clear if we write the Lax scheme in the form

f l+1
k − f l

k

δt
= −u

f l
k+1 − f l

k−1

2δx
+

f l
k−1 − 2 f l

k + f l
k+1

2δt
. (4.143)

This suggests that the Lax scheme is the scheme (4.134) applied to the equation

∂ f
∂t
= −u

∂ f
∂x
+
δx2

2δt
∂2 f
∂x2 (4.144)

= −u
∂ f
∂x
+
δx
2C
∂2 f
∂x2 . (4.145)

Additional second-derivative terms like the one appearing here are called numerical dif-
fusivity (or numerical viscosity) terms. They damp the largest wave numbers (that we will
not get right anyway), but have relatively little impact on the small wave numbers (large
scales) that we are interested in.

Is the Lax scheme consistent? Equation (4.144) tells us that it is generally not. However,
one will typically us a time step that is slightly (by a factor of 1/2 or so) below the
Courant threshold, thus keeping C constant when reducing the grid size δx. In this case,
as Eq. (4.145) shows, the additional term tends to zero as δx does. Thus, in practise, the
Lax scheme is (often) consistent, but when choosing very small time steps, it is not.

The upwind scheme

The advection equation only advects information in one direction (the positive x direction
if u > 0). The Lax scheme, however, takes into account information from both neighbouring
points, which is part of the reason why its numerical diffusivity is quite large. We can avoid
this by discretizing

f l+1
k − f l

k

δt
=


−|u|

f l
k+1 − f l

k

δx
, for u < 0

−|u|
f l
k − f l

k−1

δx
, for u > 0

(4.146)

68 IV. P  

This is called the upwind scheme (because only information from the upwind or upstream
direction is used); it is first-order accurate in time and space and is stable, provided that

C ≤ 1 . (4.147)

The upwind scheme can be written as

f l+1
k − f l

k

δt
= −u

f l
k+1 − f l

k−1

2δx
+ |u|

f l
k−1 − 2 f l

k + f l
k+1

2δx
. (4.148)

It discretizes
∂ f
∂t
= −u

∂ f
∂x
+
|u| δx

2
∂2 f
∂x2 +O (δt) +O

(
δx2

)
. (4.149)

We thus again have numerical diffusivity in the scheme, but this time the scheme is
consistent for any (admissible) values of δt and δx. Another advantage over the Lax
scheme is that if u = u(x), viscosity is only applied “where it is needed”, i.e. there is little
diffusion in regions where |u| is small.

And yet, the upwind scheme is only first-order accurate in space (and time), and its
numerical diffusivity is still relatively large (where |u| is large). Higher-order methods are
much better.

More low-order schemes

There are a number of schemes designed to be less diffusive than the Lax or the upwind
scheme and some of them are of second order in both time and space (e.g. the Lax–Wendroff
scheme or the staggered leapfrog scheme). We will not discuss them here (as we will use
something better), and just refer to [NR77] here.

TVD schemes

Another class of schemes we mention only briefly are the total variation diminishing (TVD)
schemes. These are schemes that use a nonlinear filter to minimize the total variation

V[f] ≡
∑
| fi− fi−1| (4.150)

due to the small scales6. This suppresses the formation of Nyquist zigzags that are in many
cases the source of instability.

6 For the one-dimensional advection problem (4.129) [but with possibly space-and time-dependent
advection velocity u(x, t)], the analytical total variation

V[f] ≡
∫ ∣∣∣∣∣d f

dx

∣∣∣∣∣ dx (4.151)

[for which Eq. (4.150) is a discretization] is known to be constant. This is because the effect of advection
is to displace and stretch or compress the initial profile, which does not change the difference between
successive minima and maxima.

However, in more than one dimension, or for equations more complicated than the plain advection
equation, there is no analog for this property.

4.5. Hyperbolic problems 69

These schemes give impressive results for simple test problems (and can be applied for
real-life applications), but the nonlinear character of the filtering makes them somewhat
dubious and very difficult to analyze.

Conservative schemes

Many schemes use the fact that advection-type equations can be written in the form

∂ f
∂t
= −∇(F) , (4.152)

where F is a flux function. In our example, F = u f if u is constant. This representation is
called conservation form, as it is related to conservation laws (e.g. for momentum and total
energy), and the class of conservative schemes employs this form to obtain exact conservation
of these quantities (up to round-off error). Note that the conservation form of equations
can be quite unnatural compared to the primitive equations (continuity, Navier-Stokes,
induction, . . .) that we are used to deal with.

While it may sound impressive that these schemes manage to exactly conserve energy
and momentum, it must be kept in mind that these conservation properties just constrain
the trajectory of the system to a 6N

−4-dimensional hypersurface in phase space if N is
the number of grid points. To get the correct trajectory, one needs another 6N

−3 conser-
vation properties, none of which is known. Thus, while conservative schemes are good
at conserving a few known properties, they can be just as bad at getting the phase-space
trajectory right as are other schemes of the same order.

And while non-conservative schemes allow checking the known conservation laws as
a simple accuracy test, conservative schemes provide no such straight-forward quality
measure.

4.5.2 Higher-order schemes

The basic idea of higher-order explicit schemes is quite simple: Treat time and spatial
discretization completely separately. We thus use a high-order spatial discretization like
Eq. (4.54) for the right-hand side. Once we know how to calculate the RHS, we can apply
Runge–Kutta for time stepping.

The scheme we are going to use is third-order in time and sixth-order in space.

Spectral characteristics of finite-difference stencils

Important insight into the properties of a finite-difference scheme is obtained by applying
it to a harmonic function

f (x) = eikx , where again 0 ≤ |k| ≤ kNy . (4.153)

Applying the exact first and second derivative operators to the harmonic function (4.153)
would yield

∂xeikx = ikeikx , ∂2
xeikx = −k2eikx , (4.154)

70 IV. P  

thus the spectral transfer functions

H(1)(k) ≡ e−ikxD(1)eikx , (4.155)
H(2)(k) ≡ e−ikxD(2)eikx (4.156)

indicate the quality of the finite-difference approximations D(1), D(2): for exact derivatives
D(1) = D,D(2) = D2 one would get 7

H(1)(k) = ik , H(2)(k) = −k2 . (4.157)

Finite-difference approximations D(1) and D(2) to the first and second order derivatives will
give rise to deviations,

H(1)(k) = ikΘ , H(2)(k) = −k2Θ(2) , (4.158)

where Θ and Θ(2) are very close to 1 for small wave numbers (large scales), but differ
strongly from 1 near the Nyquist wave number.

For the second-order first derivative operator (4.49), we get

H(1)(k) = ik
sinκ
κ
= ik

(
1 −

κ2

6
+ · · ·

)
, (4.159)

where κ ≡ k δx. For the fourth-order operator (4.50), we get

H(1)(k) = ik
8 sinκ − sin 2κ

6κ
= ik

(
1 −

κ4

30
+ · · ·

)
, (4.160)

and for sixth order (4.51)

H(1)(k) = ik
45 sinκ − 9 sin 2κ + sin 3κ

30κ
= ik

(
1 −

κ6

140
+ · · ·

)
. (4.161)

Note that all of these expressions become zero at the Nyquist frequency. This is unavoidable
for centred finite-difference operators on a non-staggered grid.

Similarly, for the second-order second derivative operator (4.52), we get

H(2)(k) = −k2 2
1 − cosκ

κ2 = −k2

(
1 −

κ2

12
+ · · ·

)
, (4.162)

for fourth order (4.53)

H(2)(k) = −k2 15 − 16 cosκ + cos 2κ
6κ2 = −k2

(
1 −

κ4

9
+ · · ·

)
, (4.163)

and for sixth order (4.54)

H(2)(k) = −k2 245 − 270 cosκ + 27 cos 2κ − 2 cos 3κ
90κ2 = −k2

(
1 −

κ6

560
+ · · ·

)
. (4.164)

Figure 4.2 shows the spectral transfer functions for a number of schemes from order 2 up to
20. One can easily see how all schemes yield good approximations to the exact derivative
for small k, but for intermediate wave numbers (say, half the Nyquist wavenumber κNy =
kNyδx = π) only higher orders reproduce the exact derivatives with sufficient accuracy.

7Such exact numerical derivative operators are indeed implemented by spectral schemes which apply a
Fourier transform, multiply in Fourier space by ik or −k2, and then transform back.

4.5. Hyperbolic problems 71

First derivative

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

−
iδ

x H
(1

) (κ
)

exact
2nd order
4th order
6th order
8th order
10th order
20th order

Second derivative

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

0

2

4

6

8

−
δx

2 H
(2

) (κ
)

exact
2nd order
4th order
6th order
8th order
10th order
20th order

Figure 4.2: Spectral transfer functions H(kδx) ≡ e−ikDeik as a function of κ = kδx for centred finite-difference
schemes of different orders. Left: transfer function for the first derivative operator, D(1), multiplied by
−i δx. Right: spectral transfer function for the second derivative operator, D(2), multiplied by −δx2. The
solid lines show the transfer function of the exact derivative operator (which is reproduced by spectral
schemes).

Note: The fact that the numerical first derivative of a Nyquist signal is zero has several
consequences. First, we note that for a Nyquist signal there is no propagation due to the
advection term uD(1), thus signals with wave numbers κ close to π will quickly get out of
phase with the larger-scale signals (see phase error in Sec. 4.5.2 below).

Second, an iterated first derivative D(1)D(1) f will be zero for a Nyquist signal, and thus
not have any damping effect, while the second derivative D(2) f gives rise to dissipative
damping. As a consequence, any iterated first derivative term on the right-hand side of our
partial differential equations must be re-written in terms of a second derivative. E.g. the
heat-conduction term ∂x(λ∂xT) must be used in the form ∂xλ∂xT + λ∂2

xT. If this rule is not
applied, calculations typically work reasonably well for some time, but Nyquist signals
slowly grow in amplitude (due to boundary effects and nonlinearities) and eventually
make the numerical solution unusable.

Stability

Under the advection equation, a harmonic profile

f (x, 0) = eikx (4.165)

evolves as
f (x, t) = eik(x−ut) = e−ikut f (x, 0) , (4.166)

thus the exact amplification factor is

Aexact = e−iku . (4.167)

72 IV. P  

The amplification factor of the discretized scheme will differ from this value:

A = e−iuk+γ+iω , γ, ω ∈ R . (4.168)

The quantity γ is a growth rate and gives rise to the amplitude error, while ω represents the
phase error.

The question of stability boils down to the sign of γ. If γ > 0 for some modes, then the
energy in these modes will grow and eventually dominate the solution and render it
useless. Reducing the modulus of γ in this case will not remove the instability — it only
increases the time for which it can be ignored.

If γ < 0, on the other hand, energy in the corresponding modes will decrease. This implies
that there is some numerical dissipation at work, but normally this only affects the smaller
scales. By decreasing the time step, both amplitude and phase error will be decreased, so
if γ ≤ 0 for all modes, one can control the errors by adjusting the time step δt.

Similar conclusions can be drawn for the diffusion term, which has only an amplitude
error γdiff. Here, however, instability will only occur if γdiff overcomes the natural decay of
the modes.

Table 4.1: Leading-order terms (in δt) of the growth rate γ and phase drift ω for time-stepping schemes of
different order m. The quantities Θ and Θ(2) measure the quality of the spatial schemes. Note that in the
absence of diffusion γ < 0 (indicating stability) only for m = 3, 4; 7, 8; 11, 12

m γ ω γdiff

1
(ukΘ)2

2
δt uk(1−Θ) +

(ukΘ)3

3
δt2 νk2(1−Θ(2)) −

ν2k4Θ(2)2

2
δt

2
(ukΘ)4

8
δt3 uk(1−Θ) −

(ukΘ)3

6
δt2 νk2(1−Θ(2)) +

ν3k6Θ(2)3

6
δt2

3 −
(ukΘ)4

24
δt3 uk(1−Θ) −

(ukΘ)5

30
δt4 νk2(1−Θ(2)) −

ν4k8Θ(2)4

24
δt3

4 −
(ukΘ)6

144
δt5 uk(1−Θ) +

(ukΘ)5

120
δt4 νk2(1−Θ(2)) +

ν5k10Θ(2)5

120
δt4

Table 4.1 shows the leading order in δt of the amplitude and phase errors for time-stepping
schemes of orders 1 to 4. Without artificial diffusivity, only the third- and fourth-order
schemes are stable (γ < 0), provided that the time step is sufficiently small (see § 4.5.2
below). Although this result is formulated for the advection problem (4.129), exactly the
same stability conditions hold in the case of linear sound waves

∂t ln % = −∂xv (4.169)
∂tv = −c2

s∂x ln % (4.170)

if the advection speed u is replaced by the speed of sound cs. In the case of sound waves
in a medium that moves at speed u, the relevant velocity is max(|u±cs|).

To conclude, we can say that

4.5. Hyperbolic problems 73

For advection and similar problems the amplitude error, and thus the stability of the
scheme, is determined by the time-stepping scheme, while the phase error is normally
dominated by the spatial discretization.

Artificial viscosity

When solving partial differential equations that are more realistic than our simple advec-
tion problem, even third- and fourth order time-stepping schemes require some amount
of diffusivity/viscosity due to boundary effects, nonlinearities or just to minimize the con-
sequences of the phase error. Like in the case discussed above, this viscosity will always
tend to zero for δx→ 0. The recommended minimum value of viscosity for the O

(
δt3, δx6)

scheme is8

ν = cν Umax δx (4.171)

where Umax is the largest velocity in the problem (including propagation speeds of waves),
and cν = 0.01 .. 0.02.

The length of the time step

Even the explicit schemes labelled as ‘stable’ are only stable if the time step δt satisfies a
Courant condition of the form

δt ≤ cadv
δx
u

or δt ≤ cdif
δx2

ν
. (4.172)

For O
(
δt3, δx6) schemes, the stability boundary is cadv = 1.092 and cdif = 0.4157. For

O
(
δt4, δx6

)
schemes, we have cadv = 1.783 and cdif = 0.4608. In practise one should use a

time step considerably smaller than the stability limit (C = 0.5 or smaller), since at the very
limit nonlinearities and boundaries can destabilize the configuration.

Other propagation velocities (like the sound speed) will give rise to similar time step
restrictions. The recommended time step for the O

(
δt3, δx6) scheme is

δt = min
(
0.4 δx/Umax, 0.08 δx2/νmax

)
, (4.173)

where Umax is the largest velocity9 in the problem and νmax the largest diffusivity.

8 This dependence on velocity and grid spacing is reminiscent of the upwind scheme (Sec. 4.5.1), but for
higher-order schemes we need much less diffusivity.

9 Again, Umax includes propagations speeds of waves and also drift terms like ∂xλ in ∂x(λ∂xT) =
∂xλ∂xT + λ∂2

xT.

74 IV. P  

Our standard scheme

This box summarizes the properties of the scheme we normally use to solve
partial differential equations.

• 6th-order spatial derivative operators:

D(1) f =
− fk−3 + 9 fk−2 − 45 fk−1 + 45 fk+1 − 9 fk+2 + fk+3

60 δx
(4.174)

D(2) f =
2 fk−3 − 27 fk−2 + 270 fk−1 − 490 fk + 270 fk+1 − 27 fk+2 + fk+3

180 δx2 .(4.175)

• Artificial viscosity:
ν = cνUmaxδx

with cν = 0.01 . . . 0.02 (or physical viscosity at least that large);

• 3rd-order Runge–Kutta time stepping (this is a memory-efficient version
of third-order Runge–Kutta, although this is far from being obvious here):

0
8
15

8
15

2
3

1
4

5
12

1
4 0 3

4

(4.176)

applied to solve
d fk

dt
= −uD(1) fk + νD(2) fk . (4.177)

• Time step:

δt = min
(
0.4

δx
Umax

, 0.08
δx2

νmax

)
.

Boundary conditions

x

x1 x2 x3 xNx4
x
−3 x

−2 x
−1 x0

Figure 4.3: Sketch of ghost zones for a seven-point finite-difference stencil on a grid ranging from x0 to xN.

So far, our discussion was implicitly assuming that boundary conditions are periodic (or
that the interval in x is unbounded). In real life, one often has to use other boundary

4.5. Hyperbolic problems 75

conditions. We will discuss this just briefly, restricting ourselves to boundary conditions
implemented by setting ghost zone values. A ghost zone is a layer of fictitious points
beyond the boundary which is introduced so that wide finite-difference stencils can be
applied even close to the boundary. For our sixth-order (seven-point) stencil, we need
three points on each side of the given point, thus we will need three ghost layers on
each side if we want to be able to calculate derivatives in the very boundary points. This
situation is depicted in Fig. 4.3.

When ghost zones are used, the boundary conditions provide a rule how to set the values
in the ghost points. We just present four popular choices of boundary conditions that can
be thus implemented:

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

Periodic

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

Symmetry

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

Antisymmetry

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

Generalised antisymm.

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

Figure 4.4: The four boundary conditions discussed in the text, applied to an arbitrarily chosen function.
The shaded regions to the left and right are the ‘ghost zones’.

1. Periodic boundary conditions

y−1 = yN−1 , y−2 = yN−2 , y−3 = yN−3 . (4.178)

2. Symmetry (y′0 = 0)
y−1 = y1 , y−2 = y2 , y−3 = y3 . (4.179)

3. Antisymmetry (y0 = 0)

y−1 = −y1 , y−2 = −y2 , y−3 = −y3 . (4.180)

76 IV. P  

4. Generalized antisymmetry (y′′0 = 0)

y−1 = 2y0 − y1 , y−2 = 2y0 − y2 , y−3 = 2y0 − y3 . (4.181)

Figure 4.4 illustrates these four boundary conditions.

Note that symmetry also implies that y(3)
0 = y(5)

0 = . . . = 0, and similarly antisymmetry and
generalized antisymmetry imply y(2)

0 = y(4)
0 = . . . = 0. These additional conditions are often

compatible with the physical problem (some heat-conduction problems are solved using
symmetry conditions like this), but this will not generally be the case. If they are not, the
overall order of the numerical scheme is reduced to second order in space, which sounds
like a dramatic change for the worse. In practise, however, we find that these boundary
conditions give quite good results (the coefficient in front of the O

(
δx2) error term must

be small), and the resulting schemes have very good stability properties.

Application I: Sound waves

Sound waves are propagating pressure perturbations arising from the interaction of ve-
locity, density and pressure.

Continuity equation:
∂%

∂t
+ ∇ · (%v) = 0 , (4.182)

or
∂%

∂t
+ v · ∇% = −%∇ · v , (4.183)

which we can write as
D ln %

Dt
= −∇ · v , (4.184)

where
D
Dt
≡
∂
∂t
+ v · ∇ (4.185)

is the advective derivative (sometimes also called convective or Lagrangian derivative).

Equation of motion: The Navier–Stokes equation

Dv
Dt
= −
∇P
%
+ ν

(
∆v +

1
3
∇∇ · v

)
+ fext (4.186)

describes momentum conservation (although this is not obvious from this form of the
equation). The above form holds for a compressible fluid if the kinematics viscosity ν is
constant.

4.5. Hyperbolic problems 77

Pressure term: If there is a unique relation between P and % — for example an adiabatic,
polytropic or isothermal equation of state — we can define the sound speed 10

c2
s ≡

dP
d%

. (4.189)

This allows us to rewrite the pressure term as follows

−
1
%
∇P = −

c2
s

%
∇% = −c2

s∇ ln % . (4.190)

Thus, in terms of logarithmic density, our equations become

∂ ln %
∂t
+ v · ∇ ln % = −∇ · v (4.191)

∂v
∂t
+ (v · ∇)v = −c2

s∇ ln % + ν
(
∆v +

1
3
∇∇ · v

)
+ fext .

One-dimensional case

For a one-dimensional flow v = [v(x, t), 0, 0], % = %(x, t), Eqs. (4.191) and (4.192) simplify to

∂t ln % = −v ∂x ln % − ∂xv , (4.192)

∂tv = −v∂xv −
∂xP
%
+

4
3
ν∂2

xv (4.193)

Sound waves

If we linearize equations (4.191), (4.192) using the ansatz

ln % = ln %0 + λ , (4.194)
v = 0 + u (4.195)

10 For a perfect gas in the adiabatic case (entropy s = const), the equation of state is

P = K%γ , (4.187)

where γ ≡ cp/cv is the adiabatic index, i. e. the ratio of specific heat at constant pressure, cp, to the specific
heat at constant volume, cv, and K is a constant related to the entropy s. For this case we obtain the familiar
relation

c2
s =

(
dP
d%

)
s
= γ

P
%
= γ

R

µmol
T (4.188)

where R/µmol is the specific gas constant, T the temperature, and (∂/∂)s denotes the partial derivative for
constant entropy s.

A polytropic equation of state looks like the adiabatic one (4.187), but with the adiabatic index replaced
by an exponent Γ that is treated as a free parameter.

78 IV. P  

and assuming that λ� 1, |u| � cs, we obtain the system

∂λ
∂t
= −

∂u
∂x

, (4.196)

∂u
∂t
= −c2

s
∂λ
∂x

. (4.197)

This system has the general solution

λ = f (x−cst) + g(x+cst) (4.198)
u = cs f (x−cst) − cs g(x+cst) (4.199)

where f (·), g(·) are arbitrary functions.

Nonlinear sound waves are described by our equations (4.191) and (4.192) and the nonlin-
earities give rise to new phenomena like steepening of wave profiles ans shocks.

Appendix A

Interactive Data Language (IDL)

79

Introduction to IDL

Wolfgang Dobler
Wolfgang.Dobler@ucalgary.ca

http://www.capca.ucalgary.ca/~wdobler/doc/idl/

September 19, 2005

Contents
IDL . 2
Similar tools . 3
Help . 3

1 Data Types 4
Remarks . 4
Arrays . 5

2 Plotting 6
1-dimensional . 6
2-dimensional . 7
3-dimensional . 8
Key words vs. environment variables 8
Colour tables . 9
Colour problems . 9
Windows and frames . 10
Hardcopies . 10
Fonts . 10

3 Files 10
Files . 10
Functions and subroutines 11

Simple real-life examples 12

1

80 I. I D L (IDL)

Startup file; journalling . 12
Subroutines vs. working in global scope 13

4 Fortran 14
Doing it all in IDL . 14

Foreword

IDL

– ≈ least elegant programming language I have used

– (but I never used COBOL or Visual Basic . . .)

– most powerful graphics tool I have ever used:

◦ full-featured programming language

; some aspects are awkward, but you can program around them

– widely used in the scientific community

– interactive

– optional arguments for functions and procedures

– command line editing terrible, but can be fixed (rlwrap)

2

81

Similar tools

Matlab
Octave (a Matlab clone)

– much more modern language
– much lower graphics quality

SciLab (another Matlab clone)
PerlDL (Perl derivate =⇒ very powerful language)
Python-numeric / Python-scientific (Python library)
GnuDL

– full IDL syntax
– many functions / subroutines still missing

...

Xmgr/Grace
– click-and-cramp
– apparently has a scripting language

Gnuplot
– scripting language, but not more

...

Help

Command line: idlhelp =⇒ online help

In IDL: Type ‘?’ =⇒ online help

In IDL: ‘ idl> help, var ’ =⇒ info on var

Literature:

– David Fanning, IDL Programming Techniques, 2nd Edition,
2000; ISBN 0-9662383-2-X

Web:

– http://www.dfanning.com/ (very useful)

– RSI Technical Tips at http://www.rsinc.com/
services/prodspec.cfm?product=IDL

3

82 I. I D L (IDL)

– Newsgroup news:comp.lang.idl-pvwave

Online handbooks: PDF manuals come with the IDL installation,
starting point: $IDL/docs/onlguide.pdf

1. Data Types

Atomic:

– byte, integer, long (integer)
– float, double, complex
– string

Complex:

– arrays
– structures
– object classes

Beware of

for i=0,100000 do (something)

— the 2-byte integer i will never attain the value 100000.
Instead write

for i=0L,100000 do (something)

Now i is initialised as long int and your loop will (eventually) finish.

Remarks

– not declarative

– 2/3 problem (shared with C, Fortran, . . .):
2./3. 6= 2/3 = 0

– Examples:

◦ x = 5 (integer)

◦ x = 5D0 (double)

◦ z = complex(x,7) (guess what)

– info on variables:

4

83

◦ help, x

◦ help, !p, /STRUCT

– system variables: ‘!p’, ‘!x’, ‘!y’, ‘!z’, ‘!d’, ‘!pi’ (and others)

Arrays

– zeros = fltarr(10,20)

– ones = make_array(10,20,VAL=1)

– zero indexing: zeros[0,0] = 1

– count = indgen(10) & print, count

– coordinate vectors

nx=50 & ny=60 & nz=70

x = findgen(nx) ;; x = 0, 1, . . . , 48, 49

x0=-1. & x1=1.
x = x0 + findgen(nx)/(nx-1.)*(x1-x0)

;; x = -1, -0.86, . . . , 1

;; alternatively:
x = linspace(-1, 1, nx) ;; (my routine)
y = linspace(-1.5, 1.5, ny)
z = linspace(0.2, 5, nz)

– rebin-reform
reform: re-shape array without changing data
rebin: duplicate array elements

xx = rebin(reform(x, nx, 1), nx, ny)
;; coordinate grid array

5

84 I. I D L (IDL)

yy = rebin(reform(y, 1, ny), nx, ny)
rr = sqrt(xx^2+yy^2)

– array syntax

much faster than explicit looping

ff = sin(6*xx)*exp(-2*rr)
surface, ff, x, y

– array slices:

◦ ff[0,0] , ff[10,7]

◦ ff[2:5,0]

◦ ff[*,5]

◦ ff[*,3:7]

– where function and array subscripts:

bad = where(rr gt 0.5)
;; don’t use ‘>’ instead of ‘gt’ =⇒ dubious results

ff[bad] = 0
surface, ff, x, y

2. Plotting

1-dimensional

f = sin(3*x)*exp(-x)
plot, x, f
plot, x, f, XRANGE=[0,1], COLOR=150
plot, x, f, PSYM=-4
plot, x, f, PSYM=10

6

85

g = sqrt(2*!pi*z)*z^z*exp(-z)
plot, z, g
plot, z, g, /XLOG, /YLOG
plot, z, g, /YLOG
oplot, z, gamma(z+1), LINESTYLE=2, COLOR=150
xyouts, 0.5, 1.5, "Stirling’s formula"

2-dimensional

surface, ff, x, y
for i=0,360,10 do begin $

surface, ff, x, y, AZ=25+i & wait, 0.1

shade_surf, ff, x, y

xsurface, ff

contour, ff, x, y
contour, ff, x, y, /FILL
contour, ff, x, y, /FILL, NLEVELS=60

;; (More or less) the same, but shorter:
contourfill, ff, x, y, /GRID ;; (my routine)

gg = cos(xx)*exp(-rr)
velovect, ff, gg, x, y
vel, ff, gg
vel, ff, gg, LEN=0.2, NVECS=1000

Combining different types of plotting:

contourfill, ff, x, y
contour, ff, x, y, NLEVELS=20, /OVERPLOT
velovect, ff, gg, x, y, /OVERPLOT

7

86 I. I D L (IDL)

3-dimensional

xxx = rebin(reform(x, nx, 1, 1), nx, ny, nz)
yyy = rebin(reform(y, 1, ny, 1), nx, ny, nz)
zzz = rebin(reform(z, 1, 1, nz), nx, ny, nz)
rrr = sqrt(xxx^2+yyy^2)
phi = atan(yyy,xxx)
m = 1
kz = 2*!pi/(z[nz-1]-z[0])
fff = rrr^2*exp(-4*rrr^2)*cos(m*phi-kz*zzz)

shade_volume, fff, 0.9*max(fff), vert, poly
scale3, $;; ($-sign = continuation character)
XRANGE=[0,nx], YRANGE=[0,ny], ZRANGE=[0,nz]

image = POLYSHADE(vert, poly, /T3D)
loadct, 3
TV, image

Key words vs. environment variables

f = cos(z)
plot, z, f, XRANGE=[0,6]

vs.

!x.range = [0,6]
plot, z, f
plot, z, sin(z)

!x is a structure and !x.range accesses one slot of it:

help, /STRUCTURE, !x

8

87

keyword env. variable
title !p.title
color !p.color
charsize !p.charsize
linestyle !p.linestyle
psym !p.psym
thick !p.thick

!p.multi
{x,y,z}charsize !{x,y,z}.charsize
{x,y,z}margin !{x,y,z}.margin
{x,y,z}range !{x,y,z}.range
{x,y,z}style !{x,y,z}.style
{x,y,z}title !{x,y,z}.title

Colour tables

contourfill, ff, x, y
loadct, 5 ;; loads colour table No. 5
contourfill, ff, x, y
loadct, 16 ;; loads colour table No. 16
contourfill, ff, x, y

xloadct ;; interactively pick colour table

Colour problems

If you only get different shades of red, try

device, DECOMPOSE=0

in your IDL startup file (+ below).

9

88 I. I D L (IDL)

Windows and frames

Open a new window:
window, 1

Plot several graphs in one window
!p.multi = [0,3,2]
for i=0,5 do plot, x, x^i, XRANGE=[0,1]
!p.multi = 0 ;; reset to single plot

Hardcopies

set_plot, ’PS’
plot, z, f
device, /CLOSE
set_plot, ’X’
;; or (my commands):
psa, FILE=’tmp.ps’, THICK=2
plot, z, f
pse

Fonts

plot, x, f, XTITLE=’!8B!6!Dnorm!N - !7w’

You can also use PostScript fonts (requires some setup; default with
my psa, pse) or TrueType fonts

3. Files and Functions

Files

Write

10

89

x1 = linspace(0,10,50)
y1 = cos(x1)

to file incl1.pro and

@incl1
plot, x1, y1
end

to file short.pro

Now you can run it with

idl> .r short

You can however not run incl1.pro this way:

idl> .r incl1
% End of file encountered before end of program.

since the end is missing =⇒ inconsistency.

Functions and subroutines

Write

function htan, x
if (x lt 0) then begin
res = tanh(x)

endif else begin
res = tan(x)

endelse
return, res

end

to file htan.pro and

pro jabber, x, y, z, BRILLIG=bril
if (keyword_set(bril)) then print, ’Brillig’
print, ’(x,y,z) =’, x, y, z

end

11

90 I. I D L (IDL)

to file jabber.pro

Now you can use the new function htan

idl> print, htan(0.7)

and procedure jabber

idl> jabber, 5, 3, htan(-2)

Simple real-life examples

(yet simplified)
idl/lib/default.pro

pro default, var, val
if (n_elements(var) eq 0) then var=val

end

idl/lib/minmax.pro
function minmax, f

on_error, 2 ;; return to caller on error
return, [min(f),max(f)]

end

idl/lib/contourfill.pro
pro contourfill, z, x, y, $

NLEVELS=nlevels, _EXTRA=_extra
if (n_elements(nlevels) eq 0) then nlevels=60
contour, array, x, y, $

NLEVELS=nlevels, /FILL, _EXTRA=_extra
end

Startup file; journalling

You want to be able to use your own procedures from everywhere.

1. Put your (general purpose) scripts into directory ~/idl/lib/ (or
~/idl/pro/, . . .)

2. Tell IDL to read ˜/.idlrc at startup (in ˜/.cshrc):

12

91

export IDL_STARTUP=$HOME/.idlrc
setenv IDL_STARTUP $HOME/.idlrc

3. Add your directory to the IDL search path. In ˜/.idlrc, write
device,decompose=0 ;; (probably needed for indexed colour)

!EDIT_INPUT = 1000 ;; (increase length of history)

!path = !path + ’:~/idl/lib:’ $
+ expand_path(’+~wdobler/idl/lib’) $
+ expand_path(’+~wdobler/f90/pencil-code/lib’)
;; (append your and my directories to search path)

Journalling creates a script of your IDL session

=⇒ turn experiments into scripts by adding ‘ end ’

idl> journal, ’jou.pro’ ;; activate journalling

;; (interactively try some IDL statements)

flush, !journal ;; ensure journal file is up-to-date

;; (copy journal file, edit if necessary and add ‘ end ’)
;; (. . .)

idl> journal ;; deactivate journalling

Subroutines vs. working in global scope

Subroutines:

– sub1, a, b, c

– allow for good programming style

– local variables (=⇒ no name clashes)

– need common blocks for global communication

Global scope:

13

92 I. I D L (IDL)

– .r glob1

– interactive access to all data
(−→ idea of an interactive language)

– caution needed: don’t overwrite variables

Recommendation: use subroutines for general-purpose tasks only;
work in global scope with your data

4. Interacting with Fortran

Fortran code
real, dimension(5,7,7) :: a
double precision :: d
integer, i,k,l

. . .

write(1) a, i
write(1) d, k, l

IDL program
a = fltarr(5,7,7)
d = 0D0
i=0L & j=0L & k=0L

;; Fortran integers are
;; IDL long ints

close, 1 ;; (just to be sure)
openu, 1, /F77

;; open unformatted,
;; assume F77 records

read, 1, a, i
read, 1, d, k, l
close, 1

Doing it all in IDL

Philosophy: Want to be able to do the same things with your data as
in Fortran

Thus (to work with finite-difference code): need derivative operators
(xder, xder2, etc.)

Add time-stepping =⇒ don’t need Fortran at all.

Example: advection of passive scalar

14

93

File start.pro:
;; start.pro --- Initialisation

COMMON cdat, x,y,z,nx,ny,nz,nw,ntmax,date0,time0
COMMON params, visc,u0

@xder_6th ;; load appropriate derivative routines
@xder2_6th
@pde ;; compile equations
@rk ;; simple Runge-Kutta scheme

;; Parameters
nx = 50
u0 = 1
;; Grid
x = linspace(0,1,nx,/PERIODIC)
dx = x[1]-x[0]
dt = 0.4*dx/u0 ;; time step
visc = 0.005*dx*u0 ;; numerical viscosity
;; Initial condition
f = tanh(5*cos(2*!pi*x)) & t = 0

end

File pde.pro:
;; pde.pro --- Equation(s) for advection
function pde, f

COMMON cdat, x,y,z,nx,ny,nz,nw,ntmax,date0,time0
COMMON params, visc,u0

;
dfdt = -u0*xder(f) + visc*xder2(f)
return, dfdt

end

File run.pro:
;; run.pro --- Time-stepping and plotting

for i1=0,100 do begin
for i2 = 0,10 do begin

rk, f,t,dt
endfor
plot, x, f, TITLE=’!8t !3= ’+strtrim(t,2)+’!X’
wait, .1

endfor

15

94 I. I D L (IDL)

end

Now run this code:

idl> .r start
idl> .r run
idl> .r run

16

95

96 I. I D L (IDL)

Appendix B

Concurrent Versions System (CVS)

97

A Quick Introduction to CVS

Wolfgang Dobler�

Revision: 1.25 , Date: 2005/11/28 22:32:29

Contents

1 What CVS does 2

2 Nomenclature 2

3 Getting help 2

4 Environment variables 3

5 A sample session 3

6 Tags and revision numbers 6

7 Con�icts 7

8 Flags issued by `update' 8

9 CVS/RCS Keywords 9

10 Creating a repository 10

11 Nota Bene 10

12 My top ten CVS commands 12

13 Other user interfaces 13

A Overview over CVS commands 16

B Branches 20

B.1 Accessing branches . 20

B.2 Creating branches . 21

C Tips, tricks and troubleshooting 21

C.1 User level tips and tricks . 21

C.2 Administration . 22

C.2.1 Problems with the CVS pserver . 22

�Please send comments etc. to Wolfgang.Dobler@ucalgary.ca

1

98 II. C V S (CVS)

1 What CVS does

CVS (Concurrent Versions System)

� is a system that lets groups of people work simultaneously on groups of �les (for
instance a numerical code, a LATEXpaper, a set of HTML pages, etc.)

� allows you to retrieve older versions of (the important �les in) a directory tree,
identi�ed by date, speci�c tags, . . .

� forces you (to some extent) to write log messages for any changes you make to
your code. These messages are recorded and with `cvs log . . . ' you can obtain a
full annotated changelog history for a given �le or module

� can also be used to keep your computing environment in sync (e.g. `�/bin ',
`�/idl/lib ', `�/tex/include ') across different computers

2 Nomenclature

Some speci�c terms you should know:

repository: The directory structure where CVS stores the �les it manages, together
with some administrative �les

module: Essentially, a directory tree subject to version control. More formally, a
module is a directory tree listed in `CVSROOT/modules ', which can be accessed
under the module name instead of the full path

tags, rtags: Labels attached to the �les (possibly directories) and modules, allowing
to identify them more easily

revision: A numerical or alpha-numerical tag identifying the version of a �le

check in (commit) / check out: Write your modi�ed version of a �le/module to the
repository (commit); retrieve the latest or a particularly speci�ed version from
the repository (check out)

3 Getting help

There are several levels of information available for the CVS commands.

1. `cvs -H command' or `cvs --help command' gives an overview of command. A (brief)
overview of the `cvs' command itself is obtained by `cvs -H'.

2. The CVS manpage (`man cvs') shows a brief overview over all CVS commands,
followed by a detailed list of general options and a more detailed description of
the individual commands.

3. http://www.cvshome.org/ is the standard reference site for CVS. Apparently,
three lists of frequently asked questions are available, two of which (http://
www.loria.fr/~molli/cvs/cvs-FAQ-1.4/cvsfaq0.html and http://www.loria.fr/

2

99

cgi-bin/molli/fom.cgi) are quite extensive, but not up to date, while the
third (href="http://ccvs.cvshome.org/fom/fom.cgi") is up to date and appar-
ently quite short.

4. The Cederqvist manual (`Version Management with CVS' by Per Cederqvist et
al.) is the of�cial (and comprehensive) documentation to CVS. You can read
it online as info �le with `info cvs' (or using Emacs as info reader), read
the HTML version under `http://www.cvshome.org/docs/manual/cvs.html (De-
bian GNU/Linux also installs it under `/usr/doc/cvs/html-info/cvs_toc.html '), or
get a PostScript version from the web sites mentioned above.

5. A good book on CVS, which is freely available online is `Open Source Develop-
ment with CVS' by Karl Fogel (http://cvsbook.red-bean.com/).

4 Environment variables

CVSROOT points to the repository you want to use. If you use a local
repository, CVSROOT simply contains the �le name of the top CVS di-
rectory. For server/client access, the CVSROOT variable has the form
`:pserver:user@server:directory '; see Section 5 for an example.

CVSEDITOR determines the editor used for the log messages you have to enter.
Set this to `vi', `emacsclient' or whatever you like, if you are not happy with the
editor speci�ed in $EDITOR for that purpose.

5 A sample session

Note: All examples below assume you are using the server/client method

to access the repository. If this is not the case, you need to set CVSROOT

accordingly and just ignore the cvs login and cvs logout commands.

All examples assume that some directories and modules (like test) have
already been checked in; this is because this document was written for a

speci�c group working with a speci�c code. To really start from scratch you

may want to have a look at other documentation.

Set the CVSROOT environment variable to
`:pserver:$USER@cvsserver.somehwere.net:/home/cvs/cvsroot', where $USER should
be the user name on the CVS server. You need to adapt the server name
(cvsserver.somehwere.net in the example) and the repository path (our example
/home/cvs/cvsroot corresponds to a system where a user `cvs' owns the repository).

Log in for server/client mode:

unix> cvs login
(Logging in to USER@cvsserver.somehwere.net)
CVS password:

Get a working copy of module test :

3

100 II. C V S (CVS)

unix> cd ~/f90/work
work> cvs checkout test (or, synonymically, cvs co test)
[lengthy output]

This gets you the latest version of module `test' from the repository; it creates a direc-
tory `test/ '.

work> cd test/

Edit the �les you want to modify:

work/test> [vi/emacs] src/run.f90
work/test> [vi/emacs] runs/run1/run.in

Maybe you also want to delete a �le and create a new one:

work/test> rm unnecessary.txt; cvs remove unnecessary.txt
work/test> cp src/start.f90 src/start_test.f90
work/test> [vi/emacs] src/start_test.f90; cvs add src/start_test.f90

Note that cvs add/remove does not change anything in the repository before you also
commit the changes:

work/test> cvs update (get new version from server if available)
R unnecessary.txt
cvs server: Updating idl
cvs server: Updating runs
cvs server: Updating runs/run1
M runs/run1/run.in
cvs server: Updating src
A src/start_test.f90
M src/run.f90

(your output will look different). This indicates that the �les runs/run1/run.in and
src/run.f90 have been modi�ed by you, while src/start_test.f90 has been added and
unnecessary.txt removed. Now commit the changes:

work/test> cvs commit
cvs commit: Examining .
cvs commit: Examining idl
cvs commit: Examining runs
cvs commit: Examining runs/run1
cvs commit: Examining src
Removing unnecessary.txt;
/home/cvs/cvsroot/test/unnecessary.txt,v <-- unnecessary.txt
new revision: delete; previous revision: 1.1.1.1
done
Checking in runs/run1/run.in;
/home/cvs/cvsroot/test/runs/run1/run.in,v <-- run.in
new revision: 1.2; previous revision: 1.1
done
RCS file: /home/cvs/cvsroot/test/src/start_test.f90,v
Checking in src/start_test.f90;

4

101

/home/cvs/cvsroot/test/src/start_test.f90,v <-- deriv_6th.f90
initial revision: 1.1
done
Checking in src/run.f90;
/home/cvs/cvsroot/test/src/run.f90,v <-- run.f90
new revision: 1.2; previous revision: 1.1
done

Note:

1. You can choose which �les or directories/modules to commit:

work> cvs commit test (equivalent to the above)

work> cvs commit test/src/run.f90 (commit just one �le)

2. If you do not want an editor to be started each time you commit, you

can issue the log message directly when committing (option `-m'):

work> cvs commit -m "Fixed entropy diffusion" test/src/run.f90

To get information about the changes that run.csh has gone through, use

work/test> cvs log src/run.f90
[lengthy output]

If you want to know what the differences are between your working version of the
code and the version you were starting with, type

work/test> cvs diff src/run.f90
[no output]

Therefore, your version has not been modi�ed since the last update or commit. By
contrast, to see the differences with respect to the latest version in the repository, use
`cvs diff -r HEAD run.csh'.

But you can also check what made revision 2.0 so different from revision 1.1:

work/test> cvs diff -r1.1 -r2.0 src/run.f90
[output in Unix diff(1) format]

The command `cvs status' shows you the current status of a �le/directory or reposi-
tory:

work/test> cvs status src/run.f90
===
File: run.f90 Status: Up-to-date

Working revision: 2.0
Repository revision: 2.0 /home/cvs/cvsroot/test/src/run.f90,v
Sticky Tag: 2.0
Sticky Date: (none)
Sticky Options: (none)

When you are done with the code, you can check whether you have committed all your
changes:

5

102 II. C V S (CVS)

work/test> cd .. (You must be immediately above
the directory you were working on)
work> cvs release test
M start.csh
You have [1] altered files in this repository.
Are you sure you want to release directory ‘test’: n
** ‘release’ aborted by user choice.

In this example you had not, and entered `n' to cancel the release. Now commit the
modi�ed �le start.csh and release again:

work> cvs commit -m "Set nwidth to 17" test/start.csh
work> cvs release -d test (Be careful when using the `-d' option!)
You have [0] altered files in this repository.
Are you sure you want to release (and delete) directory ‘test’: y

With the `-d' option, release removes the working copy of the module, provided you
tell it to do so by answering `y' to the prompt. If you hurry at this point, you can lose

data.

At the end of your session, you can

work/test> cvs logout

which will remove the entry for the given CVS server from the �le `�/.cvspass '. This
means that the next time you want to access the server again from the same machine,
you will be asked for the CVS password again.

6 Tags and revision numbers

CVS identi�es revisions with unique version numbers, like 1.1.1.4 or 2.15. Often it is
much more convenient to refer to a given revision with a symbolic tag. You can attach
a tag to your working copy with

work/test> cvs rtag jets-hydro-5 test

Do not use rtag in the form `cvs rtag hydro-5 .' � rtag needs the module name as last
argument and will otherwise tag all the �les you have under CVS control, affecting
any other modules as well.

There is also a command `cvs tag'. The bottom line is that you use tag to tag individ-
ual �les, but rtag for the whole module.

A more detailed discussion of the differences between tag and rtag is given in one of

the FAQs (http://www.loria.fr/~molli/fom-serve/cache/211.html): The end result of both

commands is that a [tag], or symbolic name, is attached to a single revision in each of a

collection of �les. The differences lie in:

� The collection of �les they work on.

"rtag" works on the collection of �les referred to by a "module" name as de�ned in the

"modules" �le, or a relative path within the Repository.

"tag" works on �les and directories speci�ed on the command line within the user's

working directory. (Default is '.')

6

103

Both commands recursively follow directory hierarchies within the named �les and

directories.

� The revisions they choose to tag.

"rtag" places a tag on the latest committed revision of each �le on the branch speci�ed

by the '-r' option. By default it tags the Main Branch.

"tag" places a tag on the BASE (i.e. last checked out, updated or committed) revision

of each �le found in the working directory. (The BASE revision of a �le is the one

stored in the ./CVS/Entries �le.)

[. . .]

If you want to bring all your �les up to revision 3.0 (including those that haven't
changed), you might invoke

work/test> cvs commit -r 3.0

This only works if none of the �les in the module had a revision number higher than
3.0. It is probably a good idea to check with your collaborators before you decide to
increase the major revision number (the �rst digit of the revision number).

7 Con�icts

If you want to commit a �le (say, run.csh), but someone else has in the meantime
committed a later version of it than the one you were working with, `commit ' will
speak very roughly to you:

unix> cvs commit -m ’Removed a few module references’
cvs commit: Examining src
cvs commit: Up-to-date check failed for ‘src/run.f90’
cvs [commit aborted]: correct above errors first!

What you should do now is update the �le `src/run.f90 ' (or the whole directory `src '):

unix> cvs update src
cvs server: Updating src
RCS file: /home/cvs/cvsroot/test/src/run.f90,v
retrieving revision 2.0
retrieving revision 2.1
Merging differences between 2.0 and 2.1 into run.f90
M src/run.f90

If you are lucky � i. e. if the changes appeared in different �les, or even if they are
located in non-overlapping regions of the same �le � the two versions are automat-
ically merged and everything is OK. If you have doubts, take a look a the merged
�le. (If you are unlucky, you must manually resolve the con�ict, see below.) Now
src/run.f90 contains both modi�cations together1, and you can commit the merged
�le:

1 If this is not what you wanted, you can reconstruct your version of test/src/make�le with `cvs
update -j ...'

7

104 II. C V S (CVS)

unix> cvs commit -m "Made important changes and merged" src
Checking in run.f90;
/var/local/cvsroot/test/src/run.f90,v <-- run.f90
new revision: 1.3; previous revision: 1.2
done

If you are really lucky, the merged code still compiles. . .

However, if you and your colleague have modi�ed the same part of the code, the con-
�ict can not be resolved automatically by merging, and you obtain a warning

unix> cvs update
cvs server: Updating src
RCS file: /home/cvs/cvsroot/test/src/run.f90,v
retrieving revision 2.1
retrieving revision 2.2
Merging differences between 2.1 and 2.2 into run.f90
rcsmerge: warning: conflicts during merge
cvs server: conflicts found in src/run.f90
C src/run.f90

Now you have to resolve the con�ict manually by editing the �le, �xing it and running
`cvs commit.' The �le src/run.f90 looks like this:

...
!

use Mpicomm
<<<<<<< run.f90
! use Cdata
! use Deriv
=======

use Cdata ! Really use it
use Deriv

>>>>>>> 2.2
use Sub
use Timestep

...

The line between `<<<<<<<' and `=======' represents your changes of run.csh, while the
part between `=======' and `>>>>>>>' has been committed in version 2.2 of the �le by
your swift colleague.

You can �nd your version of the �le in the hidden �le `src/.#run.csh.2.1'.

8 Flags issued by `update'

In the previous example, `update ' �agged test/src/make�le with the capital letter `M'
and test/run.csh with `C'. Here is a list of all the �ags used by `update '.

8

105

Flag Meaning

U File was updated from the repository.

P Essentially the same as `U' (but the server sends a patch, rather than the

whole �le)

A File has been added to your private copy of the sources. This is a reminder

that the �le needs to be committed.

R File has been removed from your private copy of the sources. This is a re-

minder that the �le needs to be committed.

M File is modi�ed in your working directory. It had either not been modi�ed in

the repository, or your changes and those in the repository have been suc-

cessfully merged.

C A con�ict occurred. An unmodi�ed copy of your �le is saved as

`.#file.version' in your working directory where version is the revision that

your modi�ed �le started from.

? File is in your working directory, but not in the repository, nor is it in the list

of �les for CVS to ignore. You probably want to add it.

9 CVS/RCS Keywords

When you check in �les, CVS automatically expands strings of the form `$Author$',
`$Date$', `Id', etc. with information about the �le. In particular, `Id' will be ex-
panded to something like

$Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $

which is often quite useful to have somewhere in your text �les. You can even print
this string in your code or include it in a LATEX �le.

Using CVS Keyword Expansions in LaTeX [after http://atom.ecn.purdue.edu/
~notz/latex-cvs.html] Using CVS keywords in a LATEX document is not straightfor-
ward, since the dollar sign switches to mathematical mode if no measures are taken.
There are two common workarounds and two LATEX-packages:

1. Encapsulate the keyword line by a \verb$$ environment:

\verb$Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $
or

\verb|$Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $|

(depending on whether you want the dollar signs to be printed or not). This ap-
proach is subject to the limitations of the \verb environment, which, e. g. cannot
be an argument to a LATEX macro.

2. Put `$ ' and ` $' around the keyword line:

$ $Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $ $

This neutralises the Dollar signs (by creating two math environments contain-
ing only one blank) and allows the following text to be used as you like � in-
cluding the font of your choice and handing it over to a macro.

3. The two packages rcs and rcsinfo from CTAN allow the inclusion of RCS key-
words in LATEX documents

9

106 II. C V S (CVS)

10 Creating a repository

If you want to create a new repository, you use cvs init :

unix> cvs -d ~/cvsroot init

� this creates a repository in your home directory. To access this repository, you
should set CVSROOT accordingly:

unix> setenv CVSROOT ~/tmp/cvsroot

11 Nota Bene

� If you are uncertain about what a given command might do, run it with `cvs -n
<command>' �rst.

unix> cvs -n update (Does not change any �le)
unix> cvs -n commit (Does not change any �le)

The `-n' �ag tells CVS to do a `dry run' of the command and not change any �les.

� When creating new directories, remember to explicitly add them. The com-
mands `update ' and `release ' will show the new directory �agged with a question
mark, but nobody will keep you from �nally deleting your working copy and thus
getting rid of all the �les created in your new directory.

� If you rename �les, you must remove the old �le and add the new one:

unix> mv old new
unix> cvs add new
unix> cvs remove old

Remember that for these changes to take place in the repository, you must still
commit them.

The new �le will know nothing about the modi�cation history prior to this operation.

If you want to rename a �le, retaining the full history, then you need direct access to

the repository:2 You copy the �le from `old,v' to `new,v'. Then you do cvs remove on the

old version. This ensures that cvs update removes the old version.

� Before you release a modi�ed working copy, you must commit it � otherwise,
you get warnings about modi�ed �les (marked with `M' in front of the �le name)
and should then de�nitely not continue the release, unless you want to lose the
changes you have made.

� Keep in mind that CVS simply ignores symbolic links. However, there should
be no need to link the src/ directory and �les any more, since all the supposed
advantages of this technique are features of CVS.

� Do not forget the leading cvs for the CVS commands. Otherwise you might end
up with cryptic error messages like in the following example

2 This trick is due to Karl Fogel's book mentioned in Section 3.

10

107

unix> co start.csh
co: RCS/start.csh,v: No such file or directory

This is an error message from RCS (another version control system), the `co'
command of which you called by accident. Since RCS and CVS are somehow
related (although CVS seems to be no longer built on top of RCS) and CVS
indeed works with �les like `start.csh,v ', you might be tempted to take the error
message for meaningful.

� Do not edit lines of the form

$Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $
$Author: dobler $
$Date: 2005/11/28 22:32:29 $
$Revision: 1.25 $

As discussed in Section 9, they are automatically updated by CVS each time you
commit or update the corresponding �les.

� The revision number of your module does in general not coincide with those of
the �les therein. As an example, some of the source �les that make up RCS 5.6
have the following revision numbers:

ci.c 5.21
co.c 5.9
ident.c 5.3

� You can specify dates (with the `-D' option) in a variety of formats.

These two types of format are preferred:

unix> cvs co -D ’22 Aug 2001’
unix> cvs co -D ’22 Aug 2001 20:05’
unix> cvs co -D ’2001-08-22’
unix> cvs co -D ’2001-08-22 20:05’

However, the following work as well:

unix> cvs co -D ’August 22 2001 20:05pm’
unix> cvs co -D ’a fortnight ago’
unix> cvs co -D ’yesterday’
unix> cvs co -D ’1 hour ago’

So if you want to see what you have done during the previous hour, type

unix> cvs diff -D ’1 hour ago’ src/run.f90

� It makes sense to always update immediately before you commit any changes.
It is not terrible, though, if you don't. You might just get warnings (and disobe-
dience) from `commit '.

� Only commit versions that compile and run. The socially acceptable minimum
is to commit a version that at least compiles successfully.

11

108 II. C V S (CVS)

If someone else has made changes simultaneously and your updated code
doesn't compile any more, either �x this problem before committing, or create a
separate branch for your version of the code.

� Be minimalistic about the �les you keep in the working directory. Remember
that there is no need to retain �les (say, IDL programs) that were once useful
and might, perhaps, possibly, under special circumstances be needed again in
the distant future.

In particular, do not keep old versions of �les in your working directory. For ex-
ample, if you modify version 1.5 of `run.f90 ' in an experimental way, just change
it; if you then need the original version, retrieve it with `cvs co -r 1.5 test
run.f90'

� To put a new project under CVS control, go to its top directory and import it:

unix> cd ~/f90/projects/solitons
solitons> cvs import -m "Import of soliton code v. 0.05" \

f90/solitons ncl-mhd Solitons_0-05

Here `f90/solitons ' is the name of the module in the repository, `ncl-mhd ' is a
�vendor tag� (unimportant in our case) and `Solitons_0-05 '3 is a tag attached to
this imported revision, allowing to refer to it later.

The �les are imported with revision number 1.1.1.1, which is speci�c for the
vendor branch. At the same time, the �les have revision number 1.1 and only
this is used for the version on the trunk. So, the �rst time you modify an im-
ported �le, its revision number gets increased to 1.2, the next time to 1.3, and
so on.

Importing a directory does not make it a checked out version of it (i. e. the di-
rectory where you called cvs import will not contain a `CVS ' subdirectory. One
simple way of turning your `solitons ' directory into a CVS-controlled one after
the import is to do

projects/solitons> cd ..
projects> mv solitons solitons-deleteme-eventually
projects> cvs co -d solitons f90/solitons

You can keep the original directory around for some time in case you forgot to
check in some �les, but from now on you will work with the checked-out version.

12 My top ten CVS commands

Here are my top ten commands, i. e. (ordered by frequency of use) the main CVS
commands in my repertoire:

1. cvs -qn update

2. cvs update -d

3 `Solitons-0.05 ' would look much nicer (in my opinion), but tags must not contain any of the char-

acters `$,.:;'

12

109

3. cvs commit

4. cvs diff <file> (difference to original version)
or
cvs diff -r HEAD <file> (difference to latest repository version).

A variant is
cvs diff -u -rHEAD <file> | a2ps -Eudiff --prologue=diff -Pdisplay
to pretty-print difference between local and latest version

5. cvs checkout <module>

6. cvs add <file>

7. cvs checkout -d <directory> <module>
(check out module into speci�c directory)

8. cvs log <file> | less

9. cvs annotate <file>

10. cvs import <repository> <vendor-tag> <release-tag>

Note: The -q �ag (`be somehow quiet') is so useful for larger projects that you may
want to put the line

cvs -q

into `�/.cvsrc ' to have it always set.

13 Other user interfaces

1. VC (minor) mode: If Emacs is your operating system of choice, you can use
VC mode as a front end to CVS. Normally, Emacs (at least versions � 21) auto-
matically detects which �les are under CVS and adds a string like �CVS:1.15�
to your mode line.

Useful key strokes are

C-x C-q and C-x v v: vc-next-action, do cvs commit or cvs update, whichever
makes more sense

C-x v i: vc-register, i. e. cvs add

C-x v =: vc-diff, does cvs diff on buffer �le

C-x v l: vc-print-log, shows output from cvs log in separate buffer

Less essential, but useful key strokes are

C-x v u: vc-revert-buffer, reverts to the version buffer �le was based on (i. e. un-
does all changes)

13

110 II. C V S (CVS)

C-x v ~: vc-version-other-window, loads a speci�c version into another buffer
(allows for ediff)

C-x v a: vc-update-change-log, extracts log information and writes or adds it to
a ChangeLog �le

C-x v h: vc-insert-headers, inserts `Id' as a comment

C-x v g: vc-annotate, do cvs annotate with colors indicating different ver-
sions. . .

2. pcl-cvs: There is another CVS front end for Emacs, called pcl-cvs. I do not use
it and think that VC mode is the way to go, but if you are interested in pcl-cvs,
here is a short description.

To get started, just type `M-x cvs-update RET' and enter the name of a directory
where you have a checked-out CVS module:

PCL-CVS release 1.05 from CVS release $Name: $.
Copyright (C) 1992, 1993 Per Cederqvist
Pcl-cvs comes with absolutely no warranty; for details consult the manual.
This is free software, and you are welcome to redistribute it under certain
conditions; again, consult the TeXinfo manual for details.

In directory /home/dobler/f90/mhdf/work/test:
Updated run.csh

In directory /home/dobler/f90/mhdf/work/test/src:
Modified ci run.f90
Updated mhd1.f90
Unknown mhd2.f90

---------- End -----

Now you can do lots of fancy things with a few key strokes. Look at the info

documentation for pcl-cvs for details.

One of the good points about pcl-cvs is that you have the marvelous tools `ediff '
and `emerge ' at hand (and even automatically invoked) if you need them.

On my Debian system, I had problems getting pcl-cvs to run. See http://www.
kis.uni-freiburg.de/~dobler/docs for how I solved them.

Warning to Vi users: There is a reported case of a Vi user who converted to
Emacs just to be able to use pcl-cvs; so better watch out.

3. tkcvs: If you prefer graphical user interfaces (the ones where you have to me-
chanically repeat the same sequence of 20 mouse clicks all of the time), try tkcvs.

14

111

You will �nd it via the cvshome web page; it should be possible to install it on
any Unix machine running a recent version of tcl/tk.

4. There are also graphical clients for Macintosh (MacCVSClient, see http://
www.cvshome.org/cyclic/cvs/mac.html) and Windows (WinCVS, see http://www.
cvshome.org/cyclic/cvs/windows.html)

15

112 II. C V S (CVS)

Appendix

A Overview over CVS commands

The following overview over the basic CVS commands has been adapted from the
`CVS tutorial' (http://www.loria.fr/~molli/cvs/cvs-tut/cvs_tutorial_toc.html) by
Gray Whatson.

Most of the below commands should be executing while in the directory
you checked out. If you did a `cvs checkout malloc' then you should be in
the malloc sub-directory to execute most of these commands. `cvs release'
is different and must be executed from the directory above.

cvs add and cvs remove
It can be that the changes you want to make involve a completely new
�le, or removing an existing one. The commands to use here are:

cvs add `�lename'

cvs remove `�lename'

You still have to do a `commit ' after these commands to make the ad-
ditions and removes actually take affect. You may make any number
of new �les in your copy of the repository, but they will not be com-
mitted to the central copy unless you do a `cvs add'.

CVS remove does not actually remove the �les from the repository.
It only removes them from the �current list� and puts the �les in the
CVS Attic. When another person checks out the module in the fu-
ture they will not get the �les that were removed. But if you ask for
older versions that had the �le before it was removed, the �le will be
checked out of the Attic.

cvs admin
This is the CVS interface to assorted administrative facilities. Some
of them have questionable usefulness for CVS but exist for historical
purposes. Some of the questionable options are likely to disappear in
the future. This command *does* work recursively, so extreme care
should be used.

cvs annotate
Gives you an annotated listing of the current version of a �le, contain-
ing for each line information about in which version, by whom and
when it was written. It does not contain information about deleted or
modi�ed lines (to get this, use `cvs diff' on the two versions you are
interested in).

unix> cvs annotate start.csh
Annotations for start.csh

1.1 (brandenb 22-Apr-99): ! src/start.x
1.2 (nbmvr 10-Jul-99):

16

113

1.2 (nbmvr 10-Jul-99): -8.,8., :zmin,zmax
1.2 (nbmvr 12-Jul-99): .05,2.,1.,40060000., :rin,rqu,xboxmax,rLL
1.1 (brandenb 22-Apr-99): -.25,1.5,.1499,8, :r1,r2,height,nwidth
1.1 (brandenb 22-Apr-99): 1.,0,0,0, :mu0,B0,Bphi0,eps_quadru
1.1 (brandenb 22-Apr-99): 1.666667,.1,0., :gamma,beta,HH0
1.1 (brandenb 22-Apr-99): 0,0, :nsmooth,nsmoothrun
1.1 (brandenb 22-Apr-99): 1.,0.1, :frac1,d1mask
1.3 (dobler 12-Jul-99): 1,2.,0 :isymm,scale,iffree
1.1 (brandenb 22-Apr-99): 0.0000001, :ampl
1.1 (brandenb 22-Apr-99): EOF
1.1 (brandenb 22-Apr-99):
1.1 (brandenb 22-Apr-99): rm -f tmp/n.dat
1.1 (brandenb 22-Apr-99): rm -f t*.dat
1.1 (brandenb 22-Apr-99):
1.1 (brandenb 22-Apr-99): #
1.3 (dobler 12-Jul-99): # iffree -- initialise B force-free

cvs checkout (or cvs co)
To make a local copy of a module's �les from the repository execute
`cvs checkout module' where module is an entry in your modules �le
(see below). This will create a sub-directory module and check-out the
�les from the repository into the sub-directory for you to work on.

cvs commit
When you think your �les are ready to be merged back into the repos-
itory for the rest of your developers to see, execute `cvs commit'. You
will be put in an editor to make a message that describes the changes
that you have made (for future reference). Your changes will then be
added to the central copy.

When you do a `commit ', if you haven't updated to the most recent
version of the �les, CVS tells you this; then you have to �rst update,
resolve any possible clashes, and then redo the commit.

cvs diff
To see the differences between your version of the �les, and the ver-
sion in the repository you started from, do:

cvs diff `�lename(s)'

If you want to compare to the latest version in the repository, use

cvs diff -r HEAD `�lename(s)'

cvs history
To �nd out information about your CVS repositories use the `cvs
history' command. By default `history ' will show you all the entries
that correspond to you. Use the `-a' option to show information about
everyone.

cvs history -a -o
shows you (a)ll the checked (o)ut modules

cvs history -a -T

17

114 II. C V S (CVS)

reports (a)ll the r(T)ags for the modules

cvs history -a -e
reports (a)ll the information about (e)verything

cvs import
Use `import' to incorporate an entire source distribution from an out-
side source (e.g., a source vendor) into your source repository direc-
tory. You can use this command both for initial creation of a reposi-
tory, and for wholesale updates to the module from the outside source.
*Note Tracking sources::, for a discussion on this subject

cvs init
Create a CVS repository if it doesn't exist.

cvs log
To see the commit messages for �les, and who made them, use:

cvs log `�lename(s)'

cvs login, logout
Connect to, and disconnect from, the CVS server when using the
server/client mode of accessing the repository (which we do).

cvs rdiff
Create 'patch' format diffs between releases

Builds a Larry Wall format patch(1) �le between two releases, that
can be fed directly into the `patch' program to bring an old release up-
to-date with the new release. (This is one of the few CVS commands
that operates directly from the repository, and doesn't require a prior
checkout.) The diff output is sent to the standard output device.

cvs release
When you are done with your local copy of the �les for the time be-
ing and want to remove your local copy use `cvs release module'. This
must be done in the directory above the module sub-directory you
which to release. It safely cancels the effects of `cvs checkout'. Usu-
ally you should do a commit �rst.

If you wish to have CVS also remove the module sub-directory and
your local copy of the �les then you do `cvs release -d module'.

NOTE: Take your time here. CVS will inform you of �les that may
have changed or it does not know about (watch for the `?' lines) and
then will ask you to con�rm this action. Make sure you want to do
this.

cvs remove
See cvs add.

cvs rtag
Like `tag ', `rtag ' marks the current versions of �les but it does not
work on your local copies but on the �les in the repository. To tag all
my libraries with a version name I can do:

18

115

cvs rtag LIBRARY_2_0 lib

This will recursively go through all the repository directories below
lib and add the LIBRARY_2_0 tag to each �le. This is one of the most
useful features of CVS. Use this feature if you are about to release a
copy of the �les to the outside world or just want to mark a point in
the developmental progression of the �les.

cvs status
Show current status of �les: latest version, version in working direc-
tory, whether working version has been edited and, optionally, sym-
bolic tags in the RCS �le. (Does not change repository or working
directory.)

cvs tag
One of the exciting features of CVS is its ability to mark all the �les in
a module at once with a symbolic name. You can say `this copy of my
�les is version 3'. And then later say `this �le I am working on looked
better in version 3 so check out the copy that I marked as version 3.'

Use cvs tag to tag the version of the �les that you have checked out.
You can then at a later date retrieve this version of the �les with the
tag.

cvs tag tag-name �lenames

Later you can do:

cvs co -r tag-name module

cvs update
To update your copy of a module with any changes from the central
repository, execute `cvs update'. This will tell you which �les have
been updated (their names are displayed with a `U' before them), and
which have been modi�ed by you and not yet committed (preceded by
an `M').

It can be that when you do an update, the changes in the central
copy clash with changes you have made in your own copy. You will
be warned of any �les that contain clashes by a preceding `C'. Inside
the �les the clashes will be marked in the �le surrounded by lines of
the form <<<<<<< and >>>>>>>. You have to resolve the clashes in your
copy by hand. After an update where there have been clashes, your
original version of the �le is saved as `.#file.version'.

If you feel you have messed up a �le and wish to have CVS forget
about your changes and go back to the version from the repository,
delete the �le and do an `cvs update'. CVS will announce that the �le
has been �lost� and will give you a fresh copy.

With option `-d', create any directories that exist in the repository if
they're missing from the working directory. Normally, `update' acts
only on directories and �les that were already enrolled in your work-
ing directory.

19

116 II. C V S (CVS)

cvs edit,editors,watch,watchers,unedit
These are commands that are irrelevant for us.

B Branches

B.1 Accessing branches

CVS allows different branches of one module to be worked on simultaneously. You can
branch from an earlier version, work on that branch and �nally merge your changes
into the latest revision on the main branch.

To check out the branch labelled `S-const-branch ' of module `test ', type

work/test> cvs update -r S-const-branch

(or `cvs co -r S-const-branch' if you do not have a working copy).

If you now commit changes, they will be saved on the branch `S-const-branch ':

work/test> cvs commit
[. . .]

work/test> cvs status
===
File: start.csh Status: Up-to-date

Working revision: 1.32.2.3
Repository revision: 1.32.2.3 /var/local/cvsroot/test/start.csh,v
Sticky Tag: S-const-branch (branch: 1.32.2)

[. . .]

The version number 1.32.2 is the number of the branch that was split off revision
1.32. Note that the branch tags stick to the branch (i. e. checking out the version with
the tag `S-const-branch ' will always give you the latest version on that branch), while
revision tags are tied to one revision (like e. g. 1.32), although you can update them if
you like.

`cvs log' lists you the tags, including branch tags:

work/test> cvs log start.csh
RCS file: /var/local/cvsroot/test/start.csh,v
Working file: start.csh
head: 1.35
branch:
locks: strict
access list:
symbolic names:

S-const-branch: 1.32.0.2
pre-S-const-branch: 1.32

keyword substitution: kv
total revisions: 38; selected revisions: 38

20

117

description:

revision 1.35
[. . .]

revision 1.32
branches: 1.32.2;
[. . .]

B.2 Creating branches

[from the FAQ]:

Suggested technique:

1. Attach a non-branch tag to all the revisions you want to branch from (i. e. the
branch point revisions).

2. When you decide you really need a branch, attach a branch tag to the same
revisions marked by the non-branch tag.

3. �Checkout� or �update� your working directory onto the branch.

Schematically, this means

(Write information about tags-to-come to Tags.list and commit)

unix> cvs rtag <branch_point_tag> <module>
unix> cvs rtag -b -r <branch_point_tag> <branch_tag> <module>
unix> cvs checkout -r <branch_tag> <module>

The �rst step refers to the case where you are keeping a list of tags in a �le `Tags.list ';
you should update this �le before you branch, so the information about the branch
points is up to date on both trunk and branch.

C Tips, tricks and troubleshooting

C.1 User level tips and tricks

How can I checkout a directory without getting all its subdirectories? Use
the `-l' �ag of checkout (or update) to avoid recursion through the directory tree:

unix> cvs co -l -d runs pencil-runs

To only get a sparse tree, say runs/forced/halo1/, you will have to apply this tech-
nique sequentially:

unix> cvs co -l -d runs pencil-runs
unix> cd runs; cvs up -dl forced
unix> cd forced; cvs up -dl halo1

The combination of `-l' and `-d' creates subdirectories without recursing.

21

118 II. C V S (CVS)

My cvsroot has changed (new server name, . . .) � how do I update my

checked out copies?

For each copy, cd to the top directory, then do

unix> oldroot=’:pserver:USER\@OLD.HOST.DOM:/OLD/PATH’
unix> newroot=’:pserver:USER\@NEW.HOST.DOM:/NEW/PATH’
unix> find . -path ’*CVS/Root’ \

| xargs fgrep -l "${oldroot/\\\\@/@}" \
| xargs perl -i.bak -pe "s{$oldroot}{$newroot}"

where (you guessed it) you replace all uppercase names and paths with real stuff. If
you run this once, it creates a backup `Root.bak ' of each `Root ' �le it adapts. When
running a second time, however, the �rst backup will get overwritten.

C.2 Administration

C.2.1 Problems with the CVS pserver

Here is a checklist that proved useful.

1. Have you set up your repository correctly?

cvs -d /home/User/CVS init (or wherever the repository should go)

You do need the `-d . . . ', since otherwise CVS takes the value from CVSROOT�
which points to a directory that is not yet set up for CVS.

If you try to cvs login, but get no connection:
cvs [login aborted]: connect to ...:2401 failed: Connection refused

2. (From the Cederqvist manual)
Try

telnet servername 2401

After connecting, send any text (for example "foo" followed by return). If CVS is
working correctly, it will respond with

cvs [pserver aborted]: bad auth protocol start: foo

3. Does your system know about the service cvs? If `/etc/inetd.conf ' operates with
service names instead of port numbers (i. e. if the �rst entry of each inetd line is
a name, rather than a number) your cvs entry there,

cvspserver stream tcp nowait root \
/usr/local/bin/cvs cvs --allow-root=/home/User/CVS pserver

� then `/etc/services ' must de�ne the service cvspserver:

cvspserver 2401/tcp

to tell inetd to start cvs when there is a request on port 2401.

4. Have you restarted inetd after changing `/etc/{inetd.conf,services} '?

22

119

Linux> /usr/bin/killall -HUP inetd
IRIX> /sbin/killall -HUP inetd

5. Verify your tcp wrapper settings (see `man hosts_access', `man hosts_options' un-
der Linux):

Linux> /usr/sbin/tcpdmatch cvs localhost
IRIX> /usr/etc/tcpdmatch cvs localhost

If access is `granted', this part of the setup is OK. If access is `denied', set up
your `/etc/hosts.{allow,deny} ' correctly

If you try to cvs login, but get an authorisation error:
cvs [login aborted]: authorization failed: server ... rejected access

6. Have you set up a password �le `passwd ' in `/home/User/CVS/CVSROOT '?

7. Is the CVS repository correctly speci�ed in both, `/etc/inetd.conf ' and your envi-
ronment variable? The tilde does not work here, thus

cvspserver ... cvs --allow-root=~User/CVS

must be replaced by

cvspserver ... cvs --allow-root=/home/User/CVS

if User 's home directory is `/home/User '.

Similarly, in your �/.cshrc �le, you should use

setenv CVSROOT :pserver:$USER@server.domain:/home/User/CVS

8. Check the system log �les (`/var/adm/SYSLOG ' under IRIX;
`/var/log/{message,syslog,} ' under Linux) for why inetd rejected the access

Weirder problems

9. You receive a complaint about an unrecognised option:

cvs [login aborted]: unrecognized auth response from ...: \
cvs: unrecognized option ‘--allow-root=...’

Are you running version 1.9 or older of CVS? In that case, cvs does not under-
stand the --allow-root option. Just drop it.

�Written July 2, 2006 by Wolfgang Dobler <Wolfgang.Dobler@ucalgary.ca> �

23

120 II. C V S (CVS)

Appendix C

The Pencil Code

http://www.nordita.dk/software/pencil-code

121

http://www.nordita.dk/software/pencil-code

122 III. T P C

Bibliography

[BF90] R. Davies, A. Rea, and D. Tsaptsinos (1995) Introduction to FORTRAN 90 – Student
Notes, http://www.pcc.qub.ac.uk/tec/courses/f90/stu-notes/f90-stu.html

[CK] W. Cheney and D. Kincaid (2003) Numerical Mathematics and Computing, 5th edition,
Brooks/Cole, Monterey.

[GPMan] T. Williams and C. Kelly (2004) gnuplot — an interactive plotting program (official
gnuplot manual), http://www.gnuplot.info/docs/gnuplot.pdf.

[GPTut] H. P. Gavin (2004) Gnuplot 4.0 – A Brief Manual and Tutorial, http://www.duke.
edu/~hpgavin/gnuplot.html

[F95] M. Metcalf and J. K. Reid (1999) Fortran 90/95 explained, 2nd edition, Oxford Univer-
sity Press, Oxford.

[I1996] Arieh Iserles (1996) A First Course in the Numerical Analysis of Differential Equations,
Cambridge University Press, Cambridge.

[MEx] M. L. Abell and J. P. Braselton (1997) Mathematica by Example, 2nd edition, Academic
Press, Toronto.

[NR77] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1996) Numerical
Recipes in Fortran 77: The Art of Scientific Computing, 2nd edition, Cambridge Univer-
sity Press, Cambridge. [Online available at http://www.library.cornell.edu/nr]

[NR90] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1996) Numerical
Recipes in Fortran 90: The Art of Scientific Computing, 2nd edition, Cambridge Univer-
sity Press, Cambridge. [Online available at http://www.library.cornell.edu/nr]

[Penc] W. Dobler, A. Brandenburg and others (2005) The Pencil Code: A High-Order MPI
code for MHD Turbulence. User’s and Reference Manual, http://www.nordita.dk/

software/pencil-code/doc/manual.pdf

[PSS1983] L. A. Pozdniakov, I. M. Sobol and R. A. Suniaev (1983) Comptonization and the
shaping of X-ray source spectra - Monte Carlo calculations, Soviet Scientific Reviews,
Section E: Astrophysics and Space Physics Reviews (ISSN 0143-0432) 2, 1983, p.
189–331. Translation.

123

http://www.pcc.qub.ac.uk/tec/courses/f90/stu-notes/f90-stu.html
http://www.gnuplot.info/docs/gnuplot.pdf
http://www.duke.edu/~hpgavin/gnuplot.html
http://www.duke.edu/~hpgavin/gnuplot.html
http://www.library.cornell.edu/nr
http://www.library.cornell.edu/nr
http://www.nordita.dk/software/pencil-code/doc/manual.pdf
http://www.nordita.dk/software/pencil-code/doc/manual.pdf

	More on Runge--Kutta methods
	Runge--Kutta revisited
	Examples

	Step-size control
	The Milne device
	Embedded Runge-Kutta schemes

	Stability
	Systems of ordinary differential equations
	Boundary-value problems
	Shooting method
	Problems that can be reduced to standard boundary value problem
	Eigenvalue problem
	Free boundary problems

	Random numbers and Monte Carlo methods
	Basic probability theory
	Expectation value, variance, covariance
	Joint and conditional probabilities
	Distribution of sums of random variables
	Individual distributions

	Generating random numbers with a given distribution
	Congruential generators
	Other distributions
	Transformation method
	Acceptance-rejection method

	Superposition method
	Discrete distributions

	The central limit theorem
	Monte Carlo integration
	Error estimates
	Quasi-random numbers

	The Metropolis et al algorithm
	Random processes
	Ising model of a ferromagnet
	Quantum Monte Carlo integration

	Optimization
	Simulated annealing

	Partial differential equations
	Classification
	Finite differences
	Elliptic problems
	Fourier method
	Multigrid method

	Parabolic problems
	Explicit scheme
	Fully implicit scheme
	General implicit and Crank-Nicholson schemes
	Stability
	Schemes to avoid: the Dufort--Frankel scheme; (in)consistency
	Boundary conditions
	Non-homogeneous equation
	Higher-order explicit schemes

	Hyperbolic problems
	Low-order schemes
	The Lax scheme
	The upwind scheme
	More low-order schemes
	TVD schemes
	Conservative schemes

	Higher-order schemes
	Spectral characteristics of finite-difference stencils
	Stability
	Artificial viscosity
	The length of the time step
	Boundary conditions
	Application I: Sound waves
	One-dimensional case
	Sound waves

	Interactive Data Language (IDL)
	Concurrent Versions System (CVS)
	The Pencil Code

