Exercise 1 Constructing arrays

(a) Construct and equidistant array 'equi' with values $[-5.0,-4.5,-4.0, \ldots, 4.0,4.5]$
(a) using an explicit loop (you need to initialize the array first);
(b) using the 'findgen' function;
(c) using the 'linspace' function.
(b) Construct an array of N equidistant points on the unit circle in the complex plane.

Exercise 2 Plotting simple functions

Plot and compare the functions $\sinh \sinh \tanh x$ and $\sin \sin \tan x$ over the interval $[0,2]$.
Hint: Plot both curves in one graph, distinguishing them by colour or (better unless you have a colour printer) line style.

Label the axes.

Exercise 3 Multiple plots in one window

In one window, arrange 12 plots of

$$
\begin{equation*}
T_{n}(x)=\cos (n \arccos x) \tag{1}
\end{equation*}
$$

for $n=0,2, \ldots 11$ on the interval $x \in[-1,1]$. Hint: you need to set the slot 'multi' of the system variable '! p ' to get multiple plots in one window.
Bonus questions:
(a) How are the functions $T_{n}(x)$ called?
(b) How can one plot function values of $T_{n}(x)$ on the full interval $x \in[-1.1,1.1]$, i.e. how can we apply Eq. (1) for arguments $|x|>1$? Show these new plots in a new window, leaving the old one for comparison.

Exercise 4 Plotting parametric functions

In IDL, the Bessel function $J_{n}(x)$ is available as 'beselj (x, n) '.
(a) Plot the Bessel function $J_{1}(t)$ over $\sqrt{2 /(\pi t)} \sin (t+\pi / 4)$ for $1<t<100$.
(b) Use the same scaling for both axes.
(c) Produce a PostScript plot of your best graph and print it out.

Exercise 5 Plotting two-dimensional data

Consider the function

$$
f(z)=\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{8}\right)}
$$

of complex argument $z=x+i y$.
(a) Plot $|f(z)|=|f(x, y)|$ as a surface plot for $(x, y) \in[-1.5,1.5] \times[-1.5,1.5]$ (make sure the axes don't extend further).
(b) Truncate the data where $|f(z)|>5$; you can set the values to zero, or retain the phase and set the modulus to 5 .
(c) Produce a contour line plot of $|f(x, y)|$, using 30 contour lines
(d) Overplot the unit circle.
(e) Produce a colour-coded plot of $|f(x, y)|$ and overplot the unit circle.
(f) Animate (1-dimensional) plots of $\left|f\left(x, y_{i}\right)\right|$, scanning through all values y_{i} that make up the grid. Make sure the animation is not too fast; indicate the value of y_{i} in the plot title.

Exercise 6 Array functions versus explicit loops

Save the following IDL program to a file 'loop.pro' and time it using 'time idl loop.pro' from the shell:

```
N = 10000000
x = linspace(0,10,N)
dx = x[1]-x[0]
f = fltarr(N)
df = fltarr(N)
for i=1L,N-2 do begin $
    f[i] = cos(sinh(x[i])) & $
    df[i] = (f[i+1]-f[i-1])/(2*dx) & $
endfor
exit
```

Now 'vectorize' the loop (i.e. replace it by vector arithmetic statements) and compare execution times.

