Phys 535

Assignment 9

Deadline: Friday 2 December 2005

Question 1 Advanced heat conduction with high-order method

Solve the heat conduction equation

$$
c_{v} \varrho(x, t) \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left[\lambda(x, t ; T) \frac{\partial T}{\partial x}\right]+q(x, t)
$$

on the periodic interval $0 \leq x<2 \pi$, where $c_{v}=1$ is specific heat, $\varrho=2+\cos x$ is density, $\lambda(x, t ; T)=2+4 T^{2} /\left(1+T^{2}\right)+\sin x$ is the heat conductivity, and $q(x, t)=\sin x \sin ^{3} \omega t$ is external heating with $\omega=0.5$. The initial condition is

$$
T(x, 0)=|\cos 3 x| .
$$

Use a high-order method.
Note: You need to extract the part with the second derivative on the right-hand side - two first derivatives will make the code unstable.

Question 2 Von Neumann stability analysis

Carry out von Neumann stability analysis for the upwind scheme.
(a) Derive an expression for the amplification factor A as a function of Courant number \mathcal{C} and dimensionless wave number $\kappa \equiv k \delta x$.
(b) Calculate the square of the complex modulus, $|A|^{2}$.
(c) Identify the most unstable wave number and find the critical \mathcal{C} for this wave number.

Question 3 Upwind scheme

Use the upwind scheme to solve the advection problem

$$
\begin{equation*}
\frac{\partial f}{\partial t}=-u \frac{\partial f}{\partial x} \tag{1}
\end{equation*}
$$

on the periodic interval $0 \leq x<2 \pi$, where the advection velocity $u=1$ is constant. The initial condition is

$$
\begin{equation*}
f(x, 0)=\tanh (7 \sin x) \tag{2}
\end{equation*}
$$

Note: Use IDL's shift() function to get f_{k-1}^{l} from f_{k}^{l}; it will do exactly the right thing for periodic values.

Question 4 Advection with high-order scheme
Use a high-order scheme to solve Eq. (1) with initial condition (2) for $u=1+\frac{1}{2} \cos 2 \pi(x-0.2)$ Run for 10 periods T_{P}, where $T_{\mathrm{P}}=2 \sqrt{3} / 3 \approx 1.15$.
(a) Compare the final profile to the initial one (they are identical for the exact solution).
(b) Find good values for the time step and artificial diffusivity.
(c) Find the Courant time step (the value separating stable from unstable scheme).
(d) Is the spectral scheme of much help compared to 6th-order spatial derivatives?

