Exercises

Deadline: Friday 25 November 2005

Question 1 Spectral method in 3-d

Use the spectral method to solve the Laplace equation

$$\Delta \Phi = 4\pi G \varrho$$

in three dimensions for a point mass M, i.e. a density ρ that is $M/(8 \,\delta x \,\delta y \,\delta z)$ for the 8 grid points closest to the centre $\mathbf{x} = \mathbf{0}$, and $\rho = 0$ for all other points. Assume periodic boundary conditions for the gravitational potential in all directions. Use 128 grid points in each direction and use units where GM = 1 (G being Newton's gravity constant).

- (a) Construct a three-dimensional grid and calculate ρ on that grid.
- (b) Apply the three-dimensional forward Fourier transform fft(f,-1) to the right hand side 4πGρ (if f is a three-dimensional array, fft(f) will automatically Fourier-transform in all three directions).
- (c) Construct the wave number grids k_x , k_y , k_z and combine them into one wave vector **k**.
- (d) Construct an array k_2 that is equal to $1/|\mathbf{k}|^2$ for $|k| \neq 0$ and is 0 for k = 0, etc.
- (e) Plot the potential $\Phi(r)$ over spherical radius r along a few lines: coordinate, face diagonal, space diagonal, and compare to Newton's potential for an isolated point mass. Explain the difference.
- (f) Can you also plot the modulus of the gravitational acceleration $\mathbf{g} = -\nabla \Phi$? Hint: what becomes of the gradient in Fourier space?

Question 2 Heat conduction

Solve the time-dependent heat conduction equation

$$\frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2} + q(x, y)$$

in one (spatial) dimension on the interval $0 \le x \le 1$ Use

$$q(x,t) = \sin(\omega t) \frac{e^{-(x-x_0)^2/(2w^2)}}{\sqrt{2\pi w^2}}$$

with $\chi = 1$, $\omega = \pi$, $x_0 = 2/3$, w = 0.03, the initial condition

$$T(x,0)=0,$$

and the boundary conditions

$$T(0,t) = 0$$
, $\frac{\partial T}{\partial x}(1,t) = 0$.

Use $N_x = 128$ points.

- (a) Use the explicit scheme. Choose an appropriate time step δt (such that the results do not change visibly when you half δt) and overplot profiles $T(x, t_i)$ for some times $t_i \in \{0, 1/2, 1, 3/2, 2, 5/2, 3\}$
- (b) What happens if you use a large time step? What is the critical time step, i.e. the step δt_* such that the scheme is stable for $\delta t < \delta t_*$ and unstable for $\delta t > \delta t_*$?
- (c) Use the fully implicit scheme. What happens if you use a large time step (say 10 or 30 times δt_* from above)? Compare to the results plotted in (a).
- (d) Use the Crank-Nicholson scheme. Find an appropriate time step in the same sense as for the explicit scheme and compare the two values.