Deadline: Friday 21 October 2005

Question 1 Monte Carlo integration

Consider the three cylinders

$$
\begin{array}{l:l}
\mathcal{C}_{x}: & y^{2}+z^{2} \leq 1, \\
\mathcal{C}_{y} & : \\
\mathcal{C}^{2}+z^{2} \leq 1, \\
\mathcal{C}_{z} & :
\end{array} x^{2}+y^{2} \leq 1 .
$$

Their intersections are called Steinmetz solids, in particular the bicylinder,

$$
\mathcal{B}=\mathcal{C}_{x} \cap \mathcal{C}_{y},
$$

and (what I here call) the tricylinder

$$
\mathcal{T}=\mathcal{C}_{x} \cap \mathcal{C}_{y} \cap \mathcal{C}_{z} .
$$

[See e.g. http://astronomy.swin.edu.au/~pbourke/geometry/planelev, or http:// mathworld.wolfram.com/SteinmetzSolid.html]
(a) Find an upper estimate for the volume $\|\mathcal{B}\|$ and interpret it geometrically
(b) Write a program to get the volume $\|\mathcal{B}\|$ by Monte Carlo integration.
(c) Find $\|\mathcal{T}\|$ the same way. How many points does one need to get reasonable accuracy?
(d) Use Monte Carlo integration to determine the moment of inertia tensor $J_{i k}$ for \mathcal{T},

$$
J_{i k}=\int\left(r^{2} \delta_{i k}-x_{i} x_{k}\right) d m,
$$

assuming a density of 1 . Interpret your result.

Question 2 Geometric probability: Bertrand's problem

Use two different methods to calculate the average length of the chord marked by a random straight line intersecting the unit circle. [Of course, do this numerically.]

1. Choose two random points on the circumference of the circle (i.e. choose their azimuth angles to be uniformly distributed) and use the straight line connecting the two.
2. Orient a radial line randomly [do you really need that?], choose a point P on it such that its radius (distance from the origin) is uniformly distributed on $[0,1]$. Then draw the line through P, perpendicular to the radial direction.

Compare the two averages and try to discuss.

