Deadline: Friday 7 October 2005

Question 1 Eigenfrequencies of a string

Consider a nonuniform string of length 1 under a tension force $F=1$. The mass load is $\eta(x) \equiv d m / d x=0.05+1.9 x$.

Find the first four eigenfrequencies and plot the corresponding eigenfunctions. [Hint: What are good guesses to start the iteration?]
Compare the eigenfrequencies with the case $\eta=1$.

Question 2 Internal structure of a fully convective star
(a) In a fully convective star, entropy

$$
s=c_{v}(\ln p-\gamma \ln \varrho)
$$

is (practically) constant. Here p and ϱ denote gas pressure and density, while c_{v} and c_{p} are the specific heats at constant density and pressure, respectively, and $\gamma \equiv c_{p} / c_{v}$.
Assuming that c_{v} and c_{p} are constant, find a relation to express pressure p in terms of density ϱ.
(b) Using that relation and the hydrostatic equation

$$
\frac{d p}{d r}=-g \varrho
$$

(where $g=-g_{r}$ is the gravitational acceleration, counted positive if inwards), show that density satisfies the equation

$$
\frac{d \varrho}{d r}=-C_{1} g \varrho^{2-\gamma}
$$

and thus, using $g=G m / r^{2}$,

$$
\begin{equation*}
\frac{d \varrho}{d r}=-C_{2} \frac{m \varrho^{2-\gamma}}{r^{2}}, \tag{1}
\end{equation*}
$$

Relate the constant C_{2} to entropy.
(c) Show that the mass function $m(r)$ (the mass enclosed inside a sphere of radius r) satisfies

$$
\begin{equation*}
\frac{d m}{d r}=4 \pi r^{2} \varrho \tag{2}
\end{equation*}
$$

(d) Using Equations (1) and (2), together with formulate a system of differential equations for $\varrho(r)$ and $m(r)$ and discuss the boundary conditions

$$
\begin{align*}
\varrho(0) & =\varrho_{\mathrm{c}} \tag{3}\\
m(0) & =0 \tag{4}\\
\varrho(R) & =0 \tag{5}\\
m(R) & =M \tag{6}
\end{align*}
$$

where R and M are the radius and total mass of the star, and ϱ_{c} is the central density. Hint: Equation (5) is only approximately valid. It may not look very natural, but remember how ϱ relates to p.
(e) If we are given the central density $\varrho_{c}=\varrho(0)$ and the total mass M of the star, Equations (1)-(5), together with the equation

$$
\begin{equation*}
\frac{d C_{2}}{d r}=0 \quad\left(C_{2} \text { is just an unknown constant }\right) \tag{7}
\end{equation*}
$$

represent a system of three ODEs with four boundary conditions and a free boundary (we do not know R). Transform it into a standard boundary value problem.
(f) Solve that boundary value problem numerically for the values $\gamma=5 / 3, M=0.21 \mathrm{M}_{\odot}=$ $4.2 \times 10^{29} \mathrm{~kg}$, and $\varrho_{\mathrm{c}}=15.5 \mathrm{M}_{\odot} / R_{\odot}^{3}$.

Hints:
(a) Use the (somewhat) natural units M_{\odot} and R_{\odot} (solar mass and radius);
(b) one of the equations is singular at $r=0$; to overcome this, start the integration at 10^{-6} instead;
(c) use $C_{2}=1$ and $R=0.5$ to start the shooting;
(d) you will need to truncate ϱ to ensure it does not become negative (just setting it to zero where it is negative should be enough);
(e) if you get the error message 'Singular Jacobian in broyden', it is likely that either pde() or the function you supply to broyden() is wrong.
(g) Plot $m(r), g(r), \varrho(r)$, and $p(r)$. Plot ϱ and p semi-logarithmically and use a reasonable YRANGE. Arrange the plots as four subplots in one panel. Hint: you can use psa, /LANDSCAPE for printing.

