Phys 535

Exercises

Deadline: Friday 30 September 2005

Question 1 Two-body problem

The code for this problem can be found in obelix: ~wdobler/Phys535/idl/2body.
(a) Run the scripts. What is the meaning of the diagnostic quantities printed? If you are unsure, consult run.pro.
(b) Play with parameters, in particular the initial conditions.
(c) Modify err. Which value of err do you consider acceptable?
(d) Add a weak $1 / r^{4}$ force (potential $\Phi \propto 1 / r^{3}$) and watch the effect on the Runge-Lenz vector (Perihel direction). If the additional force is attractive, does the Preihelion rotate prograde (in the same direction as the masses) or retrograde (opposite direction)?
(e) Which file defines the routine 'rk' that is used in 'run.pro' (you can use 'help, /source' to get the answer)? Use another Runge-Kutta scheme to do the time integration:

1. comment out the line '@rk_ck45' in 'start.pro',
2. compile the new routine using

IDL> .r rk

and
3. eliminate the arguments error and dtmax from the call to rk in 'r.pro'.

Which file defines 'rk' now? Is the new scheme sufficiently accurate?

Question 2 Three-body problem

The code for this problem can be found in obelix: ~wdobler/Phys535/idl/3body.
(a) Make sure 'start.pro' uses the initial conditions 'init_eject.pro' and run the scripts.
(b) How would you characterize the dynamics of the system (periodic, multi-periodic, chaotic, ...)? What is the final configuration?
(c) Adapt the file 'Curtiss-Hirschfelder/print.pro' to '3body/'.
(d) Understand and briefly discuss all parameters in 'start.pro' and 'run.pro'.
(e) Vary the error tolerance err, trying at least the following values: $\left\{10^{-6}, 10^{-7}, 10^{-8}, 10^{-9}, 10^{-10}, 10^{-11}, 10^{-12}\right\}$. (You can increase the parameter dtplot to accelerate the calculation). Explain.
(f) For 'err=1e-6', rescale the problem by a factor 2 (parameter scalefact). Verify analytically that the scaling is done correctly; why do you get different behaviour, then?
(g) Use the initial conditions for the Trojan asteroids ('@init_Lagrange' in 'start.pro'). Add a perturbation 'pert=1e-3' in 'start.pro'. Is the orbit stable?
(h) At the IDL command line, set 'corot=1' and repeat the calculation.
(i) (Keeping 'corot=1', vary m_{2} (keeping $m_{1}=1$ and $m_{3}=0$) and find approximately the value m_{2} / m_{1} that separates stable from unstable orbits. If you encounter an interesting trajectory, plot it (and indicate the mass ratio).
(j) [Reset pert und corot to 0.] Play with the 'figure-eight' solution ('@init_fig8' in 'start.pro'). Is this solution stable (set 'perturb_all=1' and e.g. 'pert=1e-2')?

What about the H1 figure-eight solution ('@init_fig8_h1' in 'start.pro')?

