Euler constant: 0.57721566490153286060651209008240243104 http://mathworld.wolfram.com/HarmonicNumber.html Euler-Mac-Laurin: n=1000000; print(log(n)+Euler+1/(2*n)); print(log(n)+Euler+1/(2*n)-1/(12*n^2)); print(log(n)+Euler+1/(2*n)-1/(12*n^2)+1/(120*n^4)); print(log(n)+Euler+1/(2*n)-1/(12*n^2)+1/(120*n^4)-1/(252*n^6)); 14.39272672286580696471446081818858767 14.39272672286572363138112748485525434 14.39272672286572363138112749318858768 14.39272672286572363138112749318858768 n=10000000 16.69531136585985264873245227287295188 16.69531136585985181539911893953961855 16.69531136585985181539911893954045188 16.69531136585985181539911893954045188 n=100000000 18.99789641385389833275044372755731609 18.99789641385389832441711039422398276 18.99789641385389832441711039422398284 18.99789641385389832441711039422398284 H(1000000) = 14.392726722865723631381127493188587676644800013744311653418433045812958507517995 H(10000000) = 16.695311365859851815399118939540451884249869752373080462785135954356288692174254 H(100000000) = 18.997896413853898324417110394223982841850971244970103438818422188657611302609182 H(1000000000) = 21.300481502347944016685101848908346966127072733598880383101750089624767245624035