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Chapter 1

Numbers

Loss of accuracy

Consider the quadratic equation
x2 − 2x + ε = 0 (1.1)

Solutions:

x1 = 1 −
√

1 − ε (1.2)
x2 = 1 +

√
1 − ε (1.3)

If ε � 1, the expression (1.2) for x1 heavily loses precision, because it subtracts from 1 a
number marginally smaller than 1.

Table 1.1 shows that for ε = 10−8 or smaller, evaluating (1.2) in single precision (i.e. using
4-byte numbers) yields 0 which is quite useless.
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Table 1.1: Calculating the solution x1 of Equ. (1.1) using different accuracy and different expressions. Un-
derlined values are accurate to the precision shown.

ε = 0.1 0.01 1.0× 10−4 1.0× 10−8 1.× 10−16

1 −
√

1 − ε [4-byte] 0.0513167 0.00501257 5.00083× 10−5 0.00000 0.00000

1 −
√

1 − ε [8-byte] 0.0513167 0.00501256 5.00013× 10−5 5.00000× 10−9 0.00000

ε

1 +
√

1 − ε
[4byte] 0.0513167 0.00501256 5.00013× 10−5 5.00000× 10−9 5.00000× 10−17

ε

2
[4-byte] 0.0500000 0.00500000 5.00000× 10−5 5.00000× 10−9 5.00000× 10−17

ε

2
+

ε2

8
[4-byte] 0.0512500 0.00501250 5.00013× 10−5 5.00000× 10−9 5.00000× 10−17

ε

2
+

ε2

8
+

ε3

16
[4-byte] 0.0513125 0.00501256 5.00013× 10−5 5.00000× 10−9 5.00000× 10−17



Appendix A

Fortran

A.1 Lineage

Fortran is one of the oldest programming languages still being used (and one of the oldest
at all), see Fig. A.1.

However, while being backward-compatible to Fortran 77 , the current versions Fortran 90
and Fortran 95 1 are modern programming languages (more modern than e.g. C ) and have
not too much in common with the old versions of Fortran from the punch-card era — unless
you insist on an outdated coding style.

In this course, we will actively use F90/F95 (the differences are minor), while often compar-
ing to F77 for reference. Many codes and subroutines in computational physics are written
in F77 , so you should be able to read (and use) F77 routines.

A.2 Basic language structure

Fortran is

not case sensitive: A variable time is the same as Time , TIME or even tImE

=⇒ You cannot use t for time and T for temperature in the same program or subrou-
tine — better use more descriptive names time and Temp

statically typed: Every variable has a data type the cannot change during program exe-
cution.

=⇒ Even if you do not declare a variable, it will still have a type. Better control this
and declare all variables.

1 Henceforth, we will shortly call them F77 , F90 and F95 ; also we will not differentiate between F90
and F95 because the differences are small and irrelevant to us here.
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call by reference: You can modify any argument of your functions and subroutines —
this often happens inadvertently.

To protect yourself, use the ‘intent’ statement [‘intent(in)’, ‘intent(iout)’, and
‘intent(inout)’, see § A.2.5 below].

line oriented: It will make a difference if you split a line or join two consecutive lines.
While F77 was also column oriented, F90 has done away with this (apart from the
limitation that lines must be shorter than 132 characters).

You can combine several lines with the ‘;’ character.

A.2.1 Hello world example

Here is about the simplest Fortran program one can make up:
F77

! simple.f

! A simple F77 program

program Hello

print*, "Hello world"

end

F90
! simple.f90

! A simple F90 program

program Hello

print*, "Hello world"

endprogram Hello

Note: By convention, F77 program files have the suffix ‘.f’, while F90 or F95 files have
the suffix ‘.f90’. Many compilers implicitly assume this convention, so if you are trying to
be original, you will encounter problems.2

Note: Fortran 77 requires all program text (anything apart from comments and labels) to
start in the 7th column or later. A character in the first column of a line makes that line
a comment. In the following, we will normally not highlight (and often not even show) the
initial six columns any more.

Fortran 90 is no longer column oriented. Comments start with an exclamation mark and
end at the end of line.

Note: If a line ends in the ‘&’ character (which can be followed by whitespace), the following
line is a continuation line, i.e. it continues the current line. For example,

F77
print*, "Hello world, ",

& "here I am, "

& "and here is Pi: ",

& 4*atan(1.)

F90
print*, "Hello world, ", &

"here I am, " &

"and here is Pi: ", &

4*atan(1.)

2 On the other hand, there is at least one silly compiler that needs to be told about these suffixes.
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is just one command line. As you can see from the example, F77 uses (an arbitrary non-
blank character) the fifth column to mark continuation lines.

Note: The semicolon character (‘&’) key can be used to combine several short statements
into one line:

F90
print*, "a"; print*, ’b’

if (x<0) then; y=x; else; y=-x; endif

A.2.2 Data types

Table A.1: Basic data types in Fortran

Type F77 F90 Examples

character (1 byte) character character "a", ";", ’"’, "’"

string (sequence
of N characters)

character*N character(LEN=N) "T’was brillig"

logical (4 byte) logical logical .true., .false.

integer (4 byte) integer

integer*4

integer

integer*4

0, -1,
1234567890

integer(kind=...)

real (4 byte) real

real*4

real

real*4

0., -1.0, .5772176,
6.67E-11

double (8 byte) double precision

real*8

double precision

real*8

real(kind=...)

0D0, -1.D,
5.772176D-1,
1.23D-128

complex (4+4=8
byte)

complex complex

complex(kind=...)

(.707, -.707),
(0., 3.1415)

complex (8+8=16
byte)

complex complex

complex(kind=...)

(7.07D-1, -.707D0),
(0.D, 3.1415D)

Note: Fortran has inherited an implicit typing system: Unless declared otherwise, vari-
ables starting with a letter from i to n are of type integer , all other variables are real .
This was very convenient in the punch-card era; nowadays, however, you should always
declare the data type of all your variables, or you are asking for unnecessary trouble. Most
Fortran compilers have a switch “-u” (or “-Wimplicit”, “-implicitnone” or similar) that
enforces explicit declaration of all variables. It is also good practise to put the line

implicit none
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into all of your Fortran files.

Note: Fortran 90 has a new way of choosing the data type that matches your require-
ments (number of digits, range). Here is a little example:

F90
integer, parameter :: digits=12, range=100

integer, parameter :: kr=selected_real_kind(digits,range)

integer, parameter :: irange=12

integer, parameter :: ki=selected_int_kind(irange)

! declare 3 vars with >= 12 digits and range at least 10^-100 to 10^100

real(KIND=kr) :: x=3.1415926536_kr_12_100,y,z

! declare three integer vars with >= 12 digits

integer(KIND=ki) :: i,j,k

While this is an elegant approach (although in real life there are some drawbacks to this
scheme), we will not use ‘kind’ to specify data types in this course.

Type conversion

To convert data to a different type, use

int convert to integer (rounding towards 0)

nint convert to integer (nearest integer)

floor convert to integer (nearest integer ≤ x)

ceiling convert to integer (nearest integer ≥ x)

real convert to real

dble convert to double precision

cmplx convert to complex

Functions related to the number model

There are a number of useful functions that give you information about capabilities and
features of the numbers you are using.

huge largest number that can be represented by the given data type (≈ 3.4× 1038 for single
precision floating-point numbers)

tiny smallest positive number that can be represented (≈ 1.2× 10−38 for single precision
floating-point numbers)
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epsilon smallest positive number that makes a difference when added to 1. (≈ 1.2× 10−7

for single precision floating-point numbers)

precision Number of decimals (≈ 7 for single precision floating-point numbers)

range Half range of decimal exponent (≈ 37 for single precision floating-point numbers,
i.e. numbers between about 10−37 and 1037 can be represented)

nearest Nearest neighbour to argument x in positive or negative direction.
‘nearest(10.,+1.) - 10.’ should give about epsilon(1.)*10.

These functions are useful e.g. when you want an iteration to give maximum accuracy at
both single and double precision. If you make the threshold error a few epsilon(x), the
accuracy will automatically be adjusted depending on the data type of x.

A.2.3 Control structures

if–then–else and select–case

Short form:

if (condition) statement

Block form with else branch:

if (condition) then

yes block
else

no block
endif

Block form without else branch:

if (condition) then

yes block
endif

Examples
F90

if (x == 0) print*, ’Zero’

if (x < 0) then

print*, ’Negative’

else

print*, ’Non-negative’
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endif

if (((x<0) .and. (y<0)) .or. ((x>0) .and. (y>0))) then

print*, ’Equal signs’

endif

if ((x*y>=0) .and. .not. (x==0))

arg = atan(y/x)

elseif (x==0) then

arg = 0.5*pi*sign(1.,y)

else

! more to fix

endif

Notes: The following operators compare numbers:

F90 operator : ‘==’ ‘/=’ ‘<’ ‘<=’ ‘>’ ‘>=’
F77 operator : ‘.eq.’ ‘.ne.’ ‘.lt.’ ‘.le.’ ‘.gt.’ ‘.ge.’

Tests for : equality inequality < ≤ > ≥

Logical and, or and negation are represented by the operators ‘.and.’, ‘.or.’, and ‘.not.’.

To check several exclusive conditions, we can use

F90
if (condition1) then

[. . . ]
elseif (condition2)

[. . . ]
elseif (condition3)

[. . . ]
else

[execute this if none of the conditions matched]
endif

If we are testing for certain values, it is more convenient to use the select–case statement:

F90
select case (i)

case (0)

print*, ’Zero’

case (1:9)

print*, ’Positive’

print*, ’One digit only’

case (11,13,17,19)
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print*, ’Two-digit prime’

case default

print*, ’Nothing special’

endselect

do loops

To count from 1 to 10, use

F77
integer i

do 123 i=1,10

print*, ’i=’, i

123 continue

F90
integer :: i

do i=1,10

print*, ’i=’, i

enddo

In F77, the number 123 is a label and is put in columns 2 to 5. The ‘continue’ statement
is a no-op command to attach the label to. In modern variants of F77 , it can probably be
replaced by ‘enddo’.

To count in steps of 3, use

F77
integer i

do 124 i=1,10,3

print*, ’i=’, i

124 enddo

F90
integer :: i

do i=1,10,3

print*, ’i=’, i

enddo

A while loop works like this:

F77
i = 20

do 126 while (i>10)

print*, ’i=’, i

i = i-2+floor(sin(i*1.))

126 continue

F90
i = 20

do while (i>10)

print*, ’i=’, i

i = i - 2 + floor(sin(i*1.))

enddo

All do loops can be left via ‘exit’ and ‘cycle’ (see § A.2.3 below). This can be used to build
an until loop:

F90
do

[. . . ]
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if (condition) exit

enddo

Exiting control loops

A ‘do’ loop can be exited or short-circuited using the ‘exit’ and the ‘cycle’ statement. While
‘exit’ leaves the innermost loop (unless given a label, see below) and continues after the
‘enddo’ command, ‘cycle’ jumps back to the beginning of the loop and starts the next loop
cycle (unless this was already the last one).

F90
prime = .true.

do i=2,floor(sqrt(1.*N))

!

! Don’t check even divisors > 2

! This is quite a stupid test (no gain in efficiency), but should work

if (mod(i,2) == 0 .and. i > 2) then

cycle

endif

!

! Check for other divisors

if (mod(N,i) == 0) then

print*, ’found divisor ’, i

prime = .false.

exit

endif

enddo

if (prime) then

print*, N, ’is a prime’

else

print*, N, ’is no prime’

endif

Named loops

You can attach a name to a loop to make it clearer what the ‘cycle’, ‘exit’, or ‘enddo’
commands refer to. If you have nested loops, naming them allows you to chose which loop
you want to ‘exit’ or ‘cycle’:

F90
outer: do i=1,ny

inner: do k=1,nx

[do something complicated]
if (x<27) cycle outer
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[do something complicated]
if (x>129) exit inner

[do something complicated]
enddo inner

enddo outer

Exiting the program

Use ‘stop’ to exit the program:
F90

read(*,*) i

if (i == -1) STOP, "Read -1 -- exiting"

call sub(i)

[. . . ]

A.2.4 Input and output

The simplest way of writing and reading is to use the default units and formats (see below)
with ‘print*’ and ‘read*’:

F90
print*, ’Please give me a number:’

read*, x

print*, ’The result is ’, sqrt(x**2+y**2), ’ unless I am wrong’

If you want more control over how the data are formatted or where they are written
from/to, use ‘(’write) and ‘read’. These commands normally take the form

read(unit,format) arg1, arg2, ... argN
write(unit,format) arg1, arg2, ... argN

The unit is a number that identifies a serial file or stream. By convention, ‘*’ denotes stdout
(standard output) for ‘write’ and stdin (standard input) for ‘read’. As for the numerical unit
numbers, 0 denotes stderr, 5 denotes stdin, and 6 denotes stdout .

The format allows to specify in detail how numbers or characters are printed. The default
format * is guaranteed to print any printable number. If you specify your own format and
the number of digits is too low to represent the variable to be printed, the corresponding
filed will just print as ‘******’ (or such), rather than becoming wider to accommodate the
value (as C would).
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F90
write(*,*) ’Please give me a number:’

read(*,*) x

write(*,*) ’The result is ’, sqrt(x**2+y**2), ’ unless I am wrong’

This does practically the same as the last example, because we have chosen the default unit
and format.

Note that ‘print*’ and ‘read*’ are followed by a comma, while ‘read()’ and ‘write()’ are not.

Formats are strings (either variables declared with ‘character(LEN=...)’ or string con-
stants) that have to be enclosed in brackets, e.g. ’(I10)’.

Table A.2: Important formatting codes for (input and) output

Code Data type Description

Aw character w: number of characters
Iw integer w: total number of characters (digits + sign)
Fw.d float/double w: total number of characters (sign + digits + decimal

point)
d: number of decimals after comma

Ew.d float/double nw: total number of characters (sign + digits + decimal
point + exponent with ‘E’ and sign )
d: number of significant digits

Dw.d float/double basically like ‘E’
Gw.d float/double like ‘F’ if the width w accommodates d significant digits

like ‘E’ else
Ln.d logical w: number of characters

Note: When using the ‘E’ or ‘G’ formatting code, you will want prepend ‘1p’, or the numbers
will look strange (0.271828183E1 instead of 2.71828183E0). If you do this, don’t forget to
switch back with ‘0p’ afterwards, or ‘F’ formatting codes (in the same format line) will print
their numbers multiplied by 10.

Example:

F90
real :: e=2.71828183, pi=3.14159265359, three=3.

integer :: i=1234567

character(LEN=80) :: fmt1,fmt2,fmt3

print*, ’e=’, e, ’, pi=’, pi

write(*,’(I10)’) i

write(*,’(A5,I10)’) ’i = ’, i

write(*,’("i = ",I10)’) i
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write(*,’(F10.3)’) e

write(*,’(A5,F10.3)’) ’e = ’, e

write(*,’("e = ",F10.3)’) e

fmt1 = ’("pi = ",F10.3))’

write(*,fmt1) pi

fmt2 = ’("i =", I10, ", (e, pi) =", 2(F10.4," "))’

write(*,fmt2) i, e, pi

fmt3 = ’("i =", I10, ", (e, pi) =", 2(1pG12.4," "),0p ", 3=", F10.4)’

write(*,fmt3) i, e*1e20, pi*1e20, three

Opening and closing files

In the simplest case, you do

F90
program Io_Simple

real :: e=2.71828183, pi=3.14159265359, three=3.

integer :: i=1234567

character(LEN=80) :: file=’test.dat’, fmt

fmt = ’(A6,F10.3)’

open(1,FILE=file) ! use unit 1 for this file

write(1,fmt) ’pi = ’,pi ! write first record

write(1,fmt) ’e = ’,e ! write second record

write(1,*) ’i = ’, i ! third record using default format

write(1,FMT=fmt,ADVANCE=’NO’) ’e = ’, e ! start fourth record

write(1,fmt,ADVANCE=’NO’) ’, pi = ’, pi ! start fourth record

write(1,*) ’, i = ’, i ! finish fourth record

close(1)

endprogram Io_Simple

Note the ‘ADVANCE=’No’’ keyword when you want to write without appending a newline (so
you can continue that line in further write commands).



A.2. Basic language structure 17

A.2.5 Functions

Functions return a value (and thus have a data type) and may have side effects, i.e. modify
their arguments.

F90
real function log11(x)

implicit none

real :: x

intent(in) :: x ! prevent me from accidentally modifying x

log11 = log(x)/log(11.)

endfunction

or

F90
function log17(x)

implicit none

real :: log17, x

intent(in) :: x ! prevent me from accidentally modifying x

log17 = log(x)/log(17.)

endfunction

You can use another name for the return value, and you can return before the end of the
block:

F90
function log17(x) result(res)

implicit none

real :: res, x

intent(in) :: x ! prevent me from accidentally modifying x

if (x <= 0) then

print*, ’Are you kidding me?’

res = -huge(1.)

return

endif

res = log(x)/log(17.)
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endfunction

A.2.6 Using functions

Functions are essentially used like variables:

F90
y = log11(x)+sin(log17(x-3)**2)

If you have both the function definition and the program in one file, you can use contains

to make the function an internal function of the program (or module):

F90
program Combined

implicit none

real :: x,y

x = 5.

y = log17(x)+sin(log17(x-3)**2)

print*, ’x,y = ’, x, y

contains ! What follows are functions (in this case just one)

! and subroutines (in this case none) that are internal to

! this module.

function log17(x)

real :: log17, x

intent(in) :: x ! prevent me from accidentally modifying x

log17 = log(x)/log(17.)

endfunction log17

endprogram Combined

Note that the function block does not need an implicit none statement here, since the
implicit statement of the program holds until the endprogram.

Alternatively, you can have the function definition outside the main program unit, but this
is less convenient as you will have to declare the function type in the program block:
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F90
function log17(x)

implicit none

real :: log17, x

intent(in) :: x ! prevent me from accidentally modifying x

log17 = log(x)/log(17.)

endfunction log17

program Separate

implicit none

real :: x,y

real :: log17 ! You _need_ to declare the type of

! log17() here

x = 5.

y = log17(x)+sin(log17(x-3)**2)

print*, ’x,y = ’, x, y

endprogram Separate

A.2.7 Subroutines

Subroutines are similar to functions, but act only through their side effects.

They are used with the ‘call’ statement.

F90
subroutine sanitize(x,y)

!

! Make sure, x is non-negative and |y| not too large

!

implicit none

real :: x,y

intent(inout) :: x, y

if (x < 0.) x = 0.

if (abs(y) > 100.) y = 1e4/y

endsubroutine sanitize

program Test
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implicit none

real :: a=-3.4, b=123.

call sanitize(a,b)

print*, ’a = ’, a, ’ , b = ’, b

endprogram Test

A.2.8 Key words and optional arguments

Function and subroutine arguments can be accessed by order (as above) or by name (which
allow you to change their order):

F90
call sanitize(Y=123., X=-3.4)

This makes some function calls much more transparent if you use descriptive names for
the function arguments.

If you specify an argument to be ‘optional’, it can be omitted when the function or sub-
routine is called. Use the ‘present’ logical function to verify whether it was present in the
call:

F90
subroutine sanitize(x,y,z)

!

! Make sure, x is non-negative and |y| not too large

!

implicit none

real :: x, y

real, optional :: z

intent(inout) :: x, y

intent(in) :: z

if (x < 0.) x = 0.

if (abs(y) > 100.) y = 1e4/y

if (present(z)) then

x = x*z

y = y/z

endif

endsubroutine sanitize

program Test
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implicit none

real :: a=-3.4, b=123., c=22.414

call sanitize(a,b)

print*, ’a = ’, a, ’ , b = ’, b

call sanitize(a,b,c)

print*, ’a = ’, a, ’ , b = ’, b

endprogram Test

A.3 Miscellaneous topics

A.3.1 Constants

The value of a constant can not be changed. To declare a constant, use the ‘parameter’
keyword:

F90
integer, parameter :: N=17

real, parameter :: pi=4*atan(1.) ! only works with some compilers

real, dimension(N,N) :: a

As you see, you can use the constant N in the declaration of the array a . This would not
(normally) work with a variable.

A.3.2 Strings

Strings are treated as character arrays and must have a length pre-specified. Many func-
tions (in particular string comparison) ignore trailing space characters, which is almost
always what you want.

You can concatenate strings using ‘//’, trim trailing space with the ‘trim’ function, and
access substrings using array slice syntax (see below):

F90
character(LEN=80) :: name, first=’Severus’, last=’Snape’

name = trim(first) // ’ ’ // trim(last)

print*, ’Full name: ’, name

first = name(1:7)

last = name(9:)
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print*, ’First name: ’, first

print*, ’Last name: ’, last

String functions

Some useful string functions are

repeat repeat a string: ‘line = repeat("-", 70)’

trim remove trailing whitespace from a string

len length of a string (including trailing whitespace)

trimlen length of a string excluding trailing whitespace

index, scan find characters or substrings within

A.3.3 Mathematical operators and functions

The operators ‘+’, ‘−’ ‘*’ and ‘/’ do what you expect (but see below). Exponentiation is rep-
resented by the ‘**’ operator (using ‘^’ will result in a compilation error).

One point to be wary of is that if both operands are integers, these operators will do integer
arithmetics, which can sometimes be surprising. Compare the following:

F90
print*, 2/3, 123456789**2

will print

2/3 = 0 , 123456789**2 = -1757895751

while
F90

print*, 2./3, 1.23456789e8**2

prints

2./3. = 0.6666667 , 1.23456789E8**2 = 1.524158E+16

Important mathematical functions

abs absolute value

sqrt square root

log, log10 natural and decadic logarithm

exp exponential function

sin, cos, tan trigonometric functions
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asin, acos, atan cyclometric functions

atan2 ‘atan2(y,x)’ gives the argument (phase angle) of the complex number x + iy.3

sinh, cosh, tanh hyperbolic functions

aimag imaginary part of complex number

conjg conjugate complex of complex number

mod, modulo remainder after division

sign copy sign: sign(x,y) returns |x| sgn y

Random numbers

Fortran 90 has a built-in random number generator, which produces numbers x in the
range 0 ≤ x < 1. To get one random number, just call the subroutine random_number():

F90
implicit none

real :: x

call random_number(x)

Most likely you will need more than one random number. The random_number() subroutine
accepts an arbitrary floating-point array as argument and fills it completely with random
numbers.

F90
program Rand

implicit none

real, dimension(5,5,5) :: x

real :: mean, sigma2

integer :: ntot

call random_number(x) ! generate 5x5x5 random numbers

ntot = size(x)

mean = sum(x)/ntot

sigma2 = sum((x-mean)**2)/(ntot-1)

print*, ’mean value : ’, mean , &

’ ideally: ’ , 0.5

print*, ’standard deviation: ’, sqrt(sigma2), &

’ ideally: ’ , sqrt(1./12.)

3 For some cases, this is the same as ‘atan(y,x)’ but that expression only covers the range [−π/2, π/2]
and fails if ‘re=0’
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endprogram

If you want a reproducible sequence of “random” numbers, you can use the subroutine
random_seed() to manipulate the seed of the generator.

A.3.4 Array syntax

Array syntax is very powerful feature of F90 . It eliminates many loops which are difficult
to read and provide ample opportunities for bugs or inefficiencies. Array syntax expresses
data parallelism, i.e. the fact that one often applies the same operations to a whole array
of data.

Compare the following codes in ‘F77’ and F90 .

F77
real a(4,5,6), b(4,5,6)

real c(4,5,6)

integer i1,i2,i3

[initialize a and b]
do 30 i3=1,6

do 20 i2=1,5

do 10 i1=1,4

c(i1,i2,i3) = a(i1,i2,i3) + b(i1,i2,i3)

10 continue

20 continue

30 continue

F90
real, dimension(4,5,6) :: a,b,c

[initialize a and b]
c = a + b

The F90 version is much more compact (less opportunities for errors), does not require the
variables i1 , i2 , and i3 , and it is much closer to vector notation in mathematics, where
you would normally write expressions like C = A + B.

Note: All intrinsic arithmetic functions will act element-wise on arrays. So one could write
F90

c = cos(a)

b = exp(a)

c = c + 1.5 - sqrt(a**b)/atan(c)

For a matrix, ‘exp(a)’ will not be the matrix exponential you know from linear algebra, but
simply the equivalent of

F77
do 30 i3=1,6

do 20 i2=1,5
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do 10 i1=1,4

b(i1,i2,i3) = exp(a(i1,i2,i3))

10 continue

20 continue

30 continue

Array slices

Often we do not want to access an array completely, but rather just a sub-block or line
(e.g. a row or a column of a matrix). In F90 , this is done using array slices, which use
the ‘:’ character to indicate an index range. For example, if a is a two-dimensional array
(a matrix), ‘a(1,:)’ will refer to the first row, while ‘a(:,3)’ will refer to the third column.
Similarly, ‘a(2:4,:)’ will refer to a matrix consisting of rows 2, 3, and 4, while ‘a(1:2,5:8)’
represents a two-dimensional submatrix formed by the intersection of rows 1 and 2 with
columns 5, 6, 7, and 8. If you omit the end of the range, the range will count up to the
largest index allowed, i.e. ‘a(7:,:)’ would be the same as ‘a(7:199,:)’ if a was declared as
real, dimension(199,15) :: a.

F77
real x(4,7,2)

real y(4,2)

integer i1,i2

do 20 i2=1,2

do 10 i1=1,4

y(i1,i2) = x(i1,3,i2)

10 continue

y(1,i1) = 2*x(2,2,:)

20 continue

F90
real, dimension(4,7,2) :: x

real, dimension(4,2) :: y

y = x(:,3,:)

y(1,:) = 2*x(2,2,:)

Note: It is no accident that the outermost loop is over i2 and the innermost over i1 .
Fortran stores the array y in memory in the order y(1,1), y(2,1), y(3,1), y(4,1), y(1,2),
y(2,2), y(3,2), y(4,2), and for efficiency reasons, the innermost loop should always be over
the index that is contiguous in memory, i.e. the first index.4

Array constructors

When we declare an array, we can initialize its values:

4In C , the contiguous index is the last index. This is why in C , one would use i2 as innermost loop in-
dex:

for (i1=0; i1<4; i1++) {

for (i2=0; i1<2; i1++) {

y[i1,i2] = x[i1,3,i2];

}

}
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F90
real, dimension(3,3) :: zero=0.

real, dimension(3,3) :: unity = (/ (/ 1., 0., 0. /), &

(/ 0., 1., 0. /), &

(/ 0., 0., 1. /) &

/)

Array functions

Some useful array functions:

sum sum all (or some) elements of an array

product multiply all (or some) elements of an array

all inquiry function returning true if the argument is true for all elements: ‘if
(all(vector>0)) print*, "positive"’

any inquiry function returning true if the argument is true for any of the elements: ‘if
(any(vector<0)) print*, "someone is negative"’

minval value of minimum element in array

maxval value of maximum element in array

shape shape (dimensionality) of an array

size size of an array (all dimensions or chosen one)

spread add dimensions by replication

transpose exchange dimensions

matmul matrix multiplication

dot product dot product of two vectors

where (not really a function) brings ‘if’ like decisions to array syntax

Note: There are also two functions min() and max() for calculating minimum and
maximum of their arguments. If you think a bit about it, you will understand why both
min/maxval() and min/max have a reason to exist. To calculate the maximum of x, y and z,
you can do either

F90
big = max(x,y,z)

or
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F90
big = maxval( (/x, y, z /) )

A.3.5 Assumed-shape arrays

In F90 , you don’t have to explicitly know the size of an array argument to a subroutine
or function. The following example defines a function cosh_1 of a 1-dimensional array
argument x that will return an array of the same length as x.

F90
function cosh_1(x)

implicit none

real, dimension(:) :: x

real, dimension(size(x,1)) :: cosh_1

cosh_1 = 0.5*(exp(x)+exp(-x))

endfunction cosh_1

The argument x is a so-called asumed-shape array. The colon ‘:’ stands for a dimension
of unknown size; you do have to know the shape (dimensionality) of x, though. For
two-dimensional x, the function would become

F90
function cosh_2(x)

implicit none

real, dimension(:,:) :: x

real, dimension(size(x,1),size(x,2)) :: cosh_2

cosh_1 = 0.5*(exp(x)+exp(-x))

endfunction cosh_1

Here is a more complex example (using in addition assumed-length strings and optional
arguments) that prints out a matrix of arbitrary size with a given format.

F90
subroutine print_matrix(matx,fmt)

!

! Print arbitrarily-sized matrix MATX, optionally with given format FMT.

! Usage:

! call print_matx(matrix)
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! call print_matx(matrix, ’F12.3’)

!

integer :: i1, i2, n1, n2

real, dimension(:,:) :: matx

character(LEN=*), optional :: fmt

character(LEN=256) :: fmt1,linefmt

n1 = size(matx,1) ! get dimensions..

n2 = size(matx,2) ! of matrix

!

! Construct format

!

if (present(fmt)) then

fmt1 = fmt

else

fmt1 = ’1pG12.4’ ! default format

endif

write(linefmt,’( "(", I4, "(", A10, ", "" ""))" )’) n2, fmt1

! Debugging output; will print something like

! linefmt = <( 6(1pG12.4 , " "))>

! print*, ’linefmt = <’, trim(linefmt), ’>’

do i1=1,n1

write(*,linefmt) matx(i1,:)

enddo

endsubroutine print_matrix

A.3.6 Allocatable arrays

Assumed-shape arrays can only be used in functions and subroutines. If your main program
requires an array the dimensions of which are not known at compile-time (e.g. because they
depend on user input), you can use allocatable arrays:

F90
program Alloc

implicit none

real, dimension(:,:), allocatable :: mtx ! 2-dimensional array

print*, ’Width of your square matrix?’

read*, n

allocate(mtx(n,n))
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! Initialize the matrix, then

call print_matrix(matx,fmt)

! do something else..

deallocate(mtx)

endprogram Alloc

A.3.7 Recursive functions/subroutines

For a function to call itself (directly, or via other functions), you have to declare it as
‘recursive’:

F90
recursive function factorial(n) result(fact)

implicit none

integer, intent(in) :: n

integer :: fact

if (n==0) then

fact = 1

else

fact = factorial(n-1)*n

endif

endfunction factorial

A.3.8 Modules and interfaces

A module is a container that can contain variables, functions and subroutines.

Another program unit gets access to these objects with the ‘use’ statement.

F90
module Hyper

!

! A simple module for hyperbolic functions

!

implicit none

real :: e=2.718281828
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contains

real function cosh(x)

real :: x

cosh = 0.5*(exp(x)+exp(-x))

endfunction cosh

endmodule Hyper

! ------------------------------------------------------------ !

program Super

use Hyper

implicit none

real :: x

x = 1.5

print*, ’cosh(’, x, ’) = ’, cosh(x)

print*, ’e = ’, e

endprogram Super

The module and the main function will normally be in separate files (in that case, you
would compile them with ‘g95 hyper.f90 super main.f90’). But you can also have them in
one single file; in this case, some compilers require that modules appear in the file before
the program unit that uses them.

Modules can ‘use’ other modules and complicated codes often consist of a large number of
modules.

Some techniques (e.g. overloading, see below) require that the program unit that uses a
function (or subroutine) knows that function’s (or subroutine’s) interface. An interface for
the ‘cosh’ function defined above would look like this

F90
interface

real function cosh(x)

real :: x

endfunction cosh

endinterface

Obviously, writing interfaces is a tedious task, and even more so when a program is in flux,
because the interface block would have to be updated each time the function or subroutine
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itself is considerably changed.

One advantage of modules is that they provide an automatic interface for all functions
and subroutines they ‘contain’. Thus, our program Super has automatically access to the
interface of ‘cosh’ through the ‘use Hyper’ command.

A.3.9 Overloading

F90 allows overloading of functions and subroutines. As a real-life example, consider the
following function that evaluates a polynomial for its argument x that can be a scalar or
1-dimensional array (in which case the result is a 1-d array, too).

F90
interface poly ! Overload the ‘poly’ function

module procedure poly_0

module procedure poly_1

endinterface

!*******************************************************

function poly_0(coef, x)

!

! Horner’s scheme for polynomial evaluation.

! Version for scalar.

!

real, dimension(:) :: coef

real :: x

real :: poly_0

integer :: Ncoef,i

Ncoef = size(coef,1)

poly_0 = coef(Ncoef)

do i=Ncoef-1,1,-1

poly_0 = poly_0*x+coef(i)

enddo

endfunction poly_0

!*******************************************************

function poly_1(coef, x)

!

! Horner’s scheme for polynomial evaluation.

! Version for 1-d array.

!

real, dimension(:) :: coef

real, dimension(:) :: x

real, dimension(size(x,1)) :: poly_1

integer :: Ncoef,i
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Ncoef = size(coef,1)

poly_1 = coef(Ncoef)

do i=Ncoef-1,1,-1

poly_1 = poly_1*x+coef(i)

enddo

endfunction poly_1

!*******************************************************

A.3.10 Private functions

Data, functions and subroutine can be declared private to a module (or even another sub-
routine or function), which means they are inaccessible from outside, even by other pro-
gram units that ‘use’ the module. This can be useful for encapsulating data and to keep the
namespace clean.

Overloading and private functions, together with user-defined data structures (which we
have not covered here) allow object-oriented programming in F90 .
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Gnuplot

Gnuplot is a relatively simple tool to plot data and functions. It uses a simple command
language rather than a graphical user interface, which has the big advantage that one can
write Gnuplot script files that do very complex things and store them for later use.

B.1 Basics

B.1.1 Simple examples

(Surprise: we won’t plot “Hello World” ;-)

Start gnuplot from a shell (i.e from your xterm, gterm, eterm, konsole window, or whatever
it may be called):

user@asgard:˜$ gnuplot

Now try the following:

Plotting a function:
gnuplot> plot sin(x)

Changing axis range:
gnuplot> set xrange [-6:6]

gnuplot> replot

Plotting several functions:
gnuplot> plot [x=*:*] [-2:2] sin(x) title ’Sine’, tan(x) title ’Tan’

gnuplot> set yrange [-3:3]

gnuplot> replot

Plotting data from file:

33
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gnuplot> plot "height.dat" using 1:2 title ’stone’, \

"height.dat" using 1:3 title ’bird’

2-d plotting:
gnuplot> splot sin(x)*cos(y)

gnuplot> set isosample 21

gnuplot> replot

Getting help:
gnuplot> help plot

gnuplot> help plot using

Quit gnuplot:
gnuplot> exit

In the following, we will mostly omit the gnuplot> prompt.

B.1.2 Special characters

Character Meaning

# comment sign (for scripts/commands, as well as data files)
\ at end of line: next line is continuation line
; separates commands within one line (as in F90 )
[x:y] range [x, y]
$i i-th column of data file
’text’ text string
"text" identical to ’text’

B.1.3 One-dimensional plotting

The ‘plot’ command is used for one-dimensional plots.

Basic syntax

The syntax of the ‘plot’ command is approximately as follows:

plot [xrange [yrange]] \

{function | ”filename”} \

[using xcol: ycol] \

[title ”title”] \

[with style] \

[, {function | ”filename”} [using xcol: ycol] [title ”title”] ...]
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Here square brackets (as in “[xrange [yrange]]”) indicate arguments that are optional, while
the curly braces and the vertical bar in “{function | ’filename’}” indicate that either “func-
tion” or “’filename’” should be chosen.

Examples:

plot besj0(x) # plot Bessel function

plot [0:30] besj0(x) # specify x range
plot [x=0:30] besj0(x) # same thing
plot [0:30] [-1:1] besj0(x) # set ordinate range as well

plot besj0(x) title ’Bessel’ # explicitly set title

plot besj0(x), besj1(x) # plot several functions in one graph

plot "height.dat" using 1:3 # plot data from file ‘height.dat’,
# column 3 over column 1

plot "height.dat" using 1:3 \

with linespoints # use connected symbols

plot "height.dat" using 1:2, \ # combine plots of different columns
"height.dat" using 1:3

plot "height.dat" using 1:2, \ # combine file data and function
1.3+4.4*(t-1.2)**2 with lines

plot real(exp(0,1*x)) title ’Re exp(i x)’, \

imag(exp(0,1*x)) title ’Im exp(i x)’ # complex numbers

The function can be any Fortran or C expression like “sin(exp(x**2)+3/cos(1+x))”; Gnu-
plot knows some more mathematical functions than these languages, see [GPMan]. Note
that the name of the independent value must be x (or t for parametric plots)for one-
dimensional plots. For two-dimensional plots, the independent variables must be x and
y (or u and v for parametric plots).

In the simplest case, the column selectors xcol, ycol are just the numbers of individual
columns (as in the examples above). More generally, they can indicate functions of the
column data like in

set xlabel ’sinh(t)’ # see below
plot "height.dat" using (sinh($1)):($2), \

"height.dat" using (sinh($1)):(sqrt($3)-0.5)

set xlabel # clear xlabel



36

Note the use of $1 for indicating a column; the column selector 1:3 above can be seen as a
shorthand for ($1):($3).

Options

Many options can be used to change the appearance of the graph, e.g.

set title ’Bessel functions’

set xlabel ’r’; set ylabel ’J0(r)’ # set axis labels for future plots
plot besj0(x), besj1(x) # plot Bessel function
set xlabel; set ylabel; set title # clear labels again

set logscale y # future plots are semilogarithmic
plot [-5:5] cosh(x)

set nologscale # revert to linear scaling

See also §B.1.5 below.

Plotting styles

The most important styles for ‘with style’ are

lines: Plot continuous line.

points: Plot individual points using symbols like ‘+’, ‘o’, etc.

linespoints: Plot points connected by line.

impulses: Plot “impulse” lines from x axis to each data point.

dots: Plot using tiny dots (useful for scatter plots of large data sets).

histeps: Plot histogram-like steps centred at the x coordinates of the data points

errorbars: Plot points with error bars

xerrorbars: Only horizontal error bars

yerrorbars: Only vertical error bars

B.1.4 Combining plots

Combining several functions, etc. in one plot

plot [-1:10] [-4:4] sin(x), \

x title ’linear’, \

x-x**3/3! title ’cubic’, \

x-x**3/3!+x**5/5! title ’quintic’
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Each of the plots can have its own ‘title’ and ‘with’ settings:

plot [-1:10] [-4:4] \

sin(x) with linespoints title ’sine function’, \

x title with points title ’linear’, \

x-x**3/3! with errorbars title ’cubic’, \

x-x**3/3!+x**5/5! with lines title ’quintic’

The result is shown in Fig. B.1.
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Figure B.1: Four curves in one plot with individual line styles and labels.

Graphs with subplots

The ‘set multiplot’ command allows you to combine several subplots in one single plot:

gnuplot> set multiplot

multiplot> set size 1.0, 0.5 # each graph has full width, half height
multiplot> set origin 0.0, 0.5; plot besj0(x) # top graph
multiplot> set origin 0.0, 0.0; plot besj1(x) # bottom graph
multiplot> set nomultiplot # reset to single plot

Note how the prompt changes to indicate that you are in subplot mode. The resulting graph
is shown in Fig. B.2
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Figure B.2: Combining subplots using ‘multiplot’.

B.1.5 Setting options

Many aspects of graphs can be modified by setting options. An option will keep its value
until it is set again (or until the are reset collectively). Thus, if you set “xrange”, “yrange”
and “zrange”, these settings will stick, while specifying the ranges in the command line
(‘plot [x=1:5] [-2:2] ...’) will act only for that plot.

Many options have a ‘no-’ form, like e.g. “key”, which can be used like ‘set nokey’.

Many options can be reset to their default value using ‘set option’ without a value. To reset
all plotting-related options collectively, use the ‘reset’ command.

For a complete list of options, see ‘help set’; for help on one option, use ‘help set option ’
or ‘help option ’. To see the current value of an option, use ‘show option ’.

Annotation

xlabel, ylabel, zlabel: Set labels for the axis

title: Set title of whole plot (appears above top of box)

key: Set, position, or disable labels (‘keys’) for individual plots

Example (Fig.B.3):

set xlabel ’t [Myr]’

set ylabel ’R [Mpc]’

set title ’Weird cosmology’

set nokey # don’t need this, since we have titles and labels
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plot [x=0:30] x**0.5 + 0.015*x**1.7

set xlabel; set ylabel; set title # clear labels
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Figure B.3: Setting labels.

Axis scaling

size: Set various aspects of the graph size. Particularly useful are ‘set size ratio 1’ to
set the aspect ratio of the graph to 1 (so its box will be a square), and ‘set size ratio

-1’ which makes the axis scaling isotropic (so circles will really be circles, etc.).

origin: Set position of plot

autoscale: Automatically set axes range to accommodate all data points.

logscale: (Semi-)logarithmic plotting. ‘set logscale y’ makes the y axis logarithmic, ‘set
nologscale’ switches back to linear scaling.

Example (Fig.B.4):

set xlabel ’t [Myr]’; set ylabel ’R [Mpc]’

set title ’Weird cosmology’; set nokey # don’t need this
set logscale x

set logscale y

plot [x=0.1:30] x**0.5 + 0.015*x**1.7

set xlabel; set ylabel; set title # clear labels
set nologscale # back to linear

Plot type
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Figure B.4: (Double) logarithmic plot.

parametric: Do parametric plot

polar: Do polar plot

Example (Fig.B.5):

set size ratio -1 # isotropic scaling
set parametric # independent variable is now $t$
plot [t=0:2*pi] sin(3*t), cos(5*t)

set size noratio # reset
set noparametric # don’t forget to reset
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Figure B.5: Parametric plot.
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Function sampling

samples: Set sampling rate (number of points) for function plotting. The default value is
100.

isosamples: Set sampling rate (number of lines) for function surface plotting. The default
value is 10 for both directions.

Other options

border: Customize (or switch off) graph borders

contour: See §B.1.7 below.

data style: Set default way of data plotting.

function style: Set default way of function plotting.

grid: Plot a grid over the graph.

surface: See §B.1.7 below.

terminal: Select output device; see §B.1.6 below.

view: Set viewing direction for surface plots.

B.1.6 Selecting the output device

set term # list available output devices

set term dumb # switch to ASCII art for emailing
plot besselj0(x)

set term x11 # switch back to separate graphics window

While ASCII plots (shown in Fig. B.6) naturally has low resolution, they are sometimes
quite useful for getting a quick overview, e.g. when running gnuplot on a remote computer
over a slow connection or one that does not permit remote graphics.

help term postscript

set term postscript color # switch to color postscript output
set output "gnuplot.ps" # write output to file ‘gnuplot.ps’
plot cos(x)

set term x11 # switch back to separate graphics window
set output # close file ‘gnuplot.ps’

help term postscript # get help on options for postscript
help term postscript enhanced # advanced options for postscript

set term postscript enhanced; set output "gnuplot.ps" # switch to postscript
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1 ++----------------+---------------***----------------+---------------++

+ + * + * +besj0(x) ****** +

0.8 ++ ** ** ++

| * * |

| * * |

0.6 ++ * * ++

| * * |

0.4 ++ * * ++

| * * |

| ***** * * ***** |

0.2 ++ ** * * * * ** ++

| * * * * * * |

0 ++ ** ** * * ** ** ++

| * * * * * * |

| ** * * * * ** |

-0.2 +** * * * * **+

* ** * * ** *

-0.4 ++ ** * * ** ++

| ** ** |

+ + + + +

-0.6 ++----------------+----------------+-----------------+---------------++

-10 -5 0 5 10

Figure B.6: ASCII version of the Bessel function J0(x).

set xlabel ’{/TimesItalic x} [10^6 {/Symbol m}m]’
plot [x=-5:5] sinh(x) \

title ’{/Symbol G}^{/Times-Italic ik}_{/Times-Italic l}’
set term x11; set output # switch device back

The last example produces a PostScript file like Fig. B.7. As you can see, you can use super-
and subscripts and even Greek letters. This is however cumbersome (it will be cumbersome
with any plotting software), and if you need to produce fancy axis labels and titles, Gnuplot
is probably not the best tool.

If you have interactively created a nice plot on your screen and want to print it, use

set term postscript # black/white postscript for printing
set output "gnuplot.ps"

replot

set term x11; set output # switch back to separate graphics window

Note: To view the PostScript file, use ‘gv’ or ‘ghostview’. To print it, you can type “p” or “P”
from gv, or type ‘lpr filename.ps ’ from the shell.

B.1.7 Two-dimensional plotting

The ‘splot’ commands plots two-dimensional functions and data.
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Figure B.7: Advanced text formatting in Gnuplot PostScript plots

Use ‘splot’ for plotting a surface

splot sin(x)*cos(y)

set isosample 21 # use more lines
set hidden3d # show hidden lines
set xlabel ’x’ # set axes labels
set ylabel ’y’

set zlabel ’sin(x)*cos(y)’

set nokey # don’t write extra label
splot [x=-3:3] [y=-3:3] sin(x)*cos(y)

The result is shown in Fig. B.8.

set contour

set nosurface

set size ratio -2

set view , 0, 1, 1 # set viewing direction (phi, theta)
splot [x=-3:3] [y=-3:3] sin(x)*cos(y)

B.1.8 Functions

You can set parameters and define functions using a straight-forward syntax.
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Figure B.8: Plotting surface using ‘splot’.

n = 5

binom(n,k) = n!/(k!*(n-k)!)

sinc(x) = (x!=0) ? sin(x)/x : 1

B.1.9 Writing scripts

You will often want to be able to re-create a graphic with slightly different features or data.
This is easy if you write gnuplot scripts, rather than use gnuplot from the command line.

In fact, you can use the command line and, after you have the plot you want, save
the commands that lead to it with ‘save filename.gp ’; this will only save the last plot
command. You should then edit the file ‘filename.gp’, remove settings that are irrelevant
and comment those that are.

Bessel.gp

# -*-gnuplot-*- (set mode for Emacs)

# Bessel.gp

#

# Date: 24-Jan-2005

# Description:

# A simple gnuplot script that plots some quantities related to

# Bessel functions
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# Calculate modulus and argument for Bessel functions. For

# trigonometric functions, this would just give mod=1 and arg=phi

modJ(x) = sqrt(besj0(x)**2 + besj1(x)**2)

argJ(x) = atan2(besj1(x), besj0(x))

dx = 0.01

dJ0(x) = (besj0(x+dx)-besj0(x-dx)) / (2*dx)

set xrange [0:50]

set samples 200 # need a few more points for this range

set xlabel ’x’

clear

set multiplot # four subplots in this graph

set size 0.5, 0.5

set origin 0, 0.5 # top left

set title ’Bessel functions J0, J1’

plot besj0(x), besj1(x)

set origin 0, 0 # bottom left

set title ’Modulus’

plot modJ(x)

set origin 0.5, 0.5 # top right

set title ’Arg’

plot argJ(x)

set origin 0.5, 0 # bottom right

set title ’Derivative’

plot -dJ0(x) title ’-dJ0(x)/dx’, besj1(x) with points

set nomultiplot

# pause 5 "Waiting 5 seconds before quitting"

# quit

From gnuplot, you use this with

gnuplot> load "Bessel.gp"

Alternatively, you can do

user@asgard:˜$ gnuplot Bessel.gp



46

directly from the shell; in this case, you will probably want to put

pause -1 "Press Return to quit"

so you have time to look at the plot
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Figure B.9: Output from ‘Bessel.gp’.

The result from ‘Bessel.gp’ is shown in Fig. B.9.

B.2 Links

http://www.techtutorials.info/fortran.html : Collection of links to Fortran tutorials

http://www.techtutorials.info/fortran.html


Appendix C

Mathematica

Mathematica is a computer algebra system, i.e. a computer program that can manipulate
analytic expresssions like algebraic or differential equations.

C.1 Getting started

To start the graphical interface to Mathematica, use the command ‘mathematica’. After
entering a line like

In[1]:= Sin[x]^2 + Cos[x]^2 // Simplify

type
�

�

�

�Ctl -
�

�

�

�Ret to get the result.

For the plain-text interface, use the command ‘math’. Due to the stupidity of the Mathemat-
ica makers, ther is no command-line history editing available in plain-text mode. You can
work around this by running Mathematica from within Emacs: Start Emacs,

unix> emacs

then, in the emacs window, type \key{Esc}-x shell, followed by
�

�

�

�Ret . You should get a shell
prompt from which you can start ‘math’. Going back/forward in the command history is done
by

�

�

�

�Esc -p and
�

�

�

�Esc -n (for previous and next).

C.1.1 Syntax basics

Notation in Mathematica is relative straight-forward. Comments are enclosed by starred
brackets (* like this *). Mathematical functions often have their usual name (but not
e.g. arsinh, etc), but capitalized (e.g. Sin, Exp, Ln). Round brackets ‘()’ are used for grouping,
while square brackets ‘[]’ indicate function or operator arguments:

47
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In[1]:= Sin[x]^2 + Cos[x]^2 // Simplify

In[2]:= Expand[(x+y)^3]

In[3]:= D[x^3*Exp[-x],x]

In[4]:= Integrate[x*Sin[x], x] (* indefinite integral *)

Grouping of arguments in lists is done with curly braces ‘{}’:

{In[5]:= } Integrate[Sin[x]/x, {x, 0, Infinity}] (* definite integral *)

The result of the last operation can be recalled using ‘%’, the second last output is ‘%%’, etc.

A backslash ‘\’ can be used for continuation lines, while a semicolon ‘;’ separates multiple
statements in onw line.

C.2 Mathematical constants

Pi: π ≈ 3.141592653590

E: e ≈ 2.718281828459

I: i =
√
−1

Infinity: ∞
EulerGamma: γ ≈ 0.577215664

Catalan: C ≈ 0.9159655942

C.3 Floating-point approximations

To get the first 40 digits of Catalan’s constant, use the N (numerical value) function:

In[1]:= N[Pi] (* default precision [˜5 digits] *)
In[1]:= Pi // N (* same thing *)
In[1]:= N[Pi,40] (* 40 digits *)

C.4 Some mathematical functions

Sqrt[z]: square root

Sin[z], Cos[z], Tan[z], Cot[z]: trigonometric functions
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ArcSin[z], ArcCos[z], ArcTan[z], ArcCot[z]: cyclometric functions

Sinh[z], Cosh[z], Tanh[z], Coth[z]: hyperbolic functions

ArcSinh[z], ArcCosh[z], ArcTanh[z], ArcCoth[z]: area (inverse hyperbolic) functions

Exp[z], Log[z]: exponential function and natural logarithm

Log[10,z]: base-10 logarithm

More esoteric mathematical functions:

BesselJ[n,z]: Bessel function of first kind

HermiteH[n,z]: Hermite polynomial

UnitStep[x]: Heaviside step function

DiracDelta[x]: Delta function

Fibonacci[z]: Fibonacci number

Prime[z]: Nth prime number

C.5 Algebra and simplification

In[1]:= Nest[Log,x,3] (* iterated log *)

In[1]:= Solve[x^2-9==0, x] (*yields {{x -> -3}, {x -> 3}} *)
In[1]:= x ./ Solve[x^2-9==0, x] (*yields { -3, 3} *)

In[1]:= FindRoot[Tan[x]==x, {x, 4.4}] (* numerical root-finding *)
In[1]:= NRoots[x^4 - 3 x^3 + 1 == 0, x] (* numerically find all roots of polynomial *)

In[1]:= Factor[x^2 + 4 c x + 4 c^2]

In[2]:= Factor[x^2 + 9, GaussianIntegers->True]

In[1]:= Expand[(x + 2 c)^2]

In[1]:= Together[1/(1+x)+1/(1-x)] (* common denominator *)
In[2]:= Apart[1/(1-x^2)] (* split fraction *)

In[1]:= Collect[x y + x^2 - 2 (y+1) x, y]

In[1]:= Simplify[Sin[x]^2 + Cos[x]^2]

In[1]:= Sin[x]^2 + Cos[x]^2 // Simplify (* ditto *)
In[1]:= FullySimplify[Sin[x]^2 + Cos[x]^2] (* similar *)

In[1]:= a + Log[E^y] /. Log[E^z_] -> z (* manual transformation rule *)
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In[1]:= Log[E^z_] -> z (* global transformation rule [acts on all following expressions] *)
In[1]:= fac[n_] := n fac[n-1]; fac[0] = 1

C.6 Calculus and similar

In[1]:= D[Exp(-x)*x^n, x] (* derivative *)
In[2]:= D[(x+y+z)^n, y] (* partial derivative *)

In[1]:= Integrate[(x+y)^3, x] (* indefinite integral *)
In[1]:= Integrate[(x+y)^3,{x, 0, 2 y}] (* definite integral *)

In[1]:= NIntegrate[Sin[x]/Sqrt[x], {x,0,5}] (* numerical integration *)
In[1]:= NIntegrate[Sin[x]/Sqrt[x], {x,0,Infinity}, Method->Oscillatory]

In[1]:= Sum[n^2, {k, 1, n}] (* indefinite sum *)
In[2]:= Sum[1/k^2, {k, 1, Infinity}] (* definite sum *)

In[1]:= Limit[Tan[x], x->Pi/2, Direction->1] (* from left *)

In[1]:= DSolve[y’[x]==y[x]+x, y[x], x] (* solve differential equation *)
In[w]:= DSolve[y’’[x]+y[x]==0, y[x], x] (* solve differential equation *)

C.7 Defining constants and functions

In[1]:= c = 17 (* constant *)
In[1]:= f[x_] := Sin[x] Exp[x] (* function *)

The ‘:=’ defers evaluation to the time when ‘f’ is called.

C.8 Logical operators

== equality (‘a == b’)

!= inequality (‘a != b’)

<, >, <=, >=



C.9. Plotting 51

C.9 Plotting

In[1]:= Plot[Sin[x]/x, {x,-2,2}] (* 2-dimensional *)
In[2]:= Plot[{Sin[x], x, x-x^3/6, x-x^3/6+x^5/120}, {x,-2,2}]

In[3]:= ParametricPlot[Sin[2 x], Cos[3 x], {x,0,2*Pi}] (* parametric *)

In[1]:= f[x_,y_] := Sin[2*x]/Exp[x]*Exp[-y^2]

In[2]:= Plot3D[f[x,y], {x,-1,1}, {y,-1,1}] (* surface plot *)
In[3]:= ContourPlot[f[x,y], {x,-1,1}, {y,-1,1}]

In[4]:= DensityPlot[f[x,y], {x,-1,1}, {y,-1,1}]

C.10 Evaluating expressions

In[1]:= x^2 /. x -> 5 (* evaluate for x=5 without modifying x *)
In[2]:= Cos[x] /. x -> {0, Pi}

In[1]:= sol = Solve[x^3 + 3 x^3 -x + 5 ==0, x]

In[2]:= x^3 + 3 x^3 -x + 5 /. sol (* backsubstitution *)

C.11 List manipulation

In[1]:= {2,3,4} + 7 + {0,-2,2}^2

In[2]:= Join[{a,b}, {c,b,e}] (* list concatenation -> {a,b,c,b,e} *)
In[3]:= Union[{a,b}, {c,b,e}] (* set union -> {a,b,c,e} *)

In[1]:= {a,b,c,d,e}[[2]] (* list element (counts from 1) -¿ b *)

C.12 Linear algebra

In[1]:= {a,b} . {c,d} (* dot product *)
In[1]:= Cross[{x1,x2,x3}, {y1,y2,y3}] (* cross product *)
In[2]:= {{a,b},{c,d}} . {e,f} (* matrix product *)

In[1]:= mat := {{0,-1},{1,0}}
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In[2]:= MatrixPower[mat,3]

In[3]:= Table[%] // MatrixForm (* nicer printing *)
In[4]:= Table[%] // TraditionalForm

In[1]:= Array[a, {3,3}] (* a[1,1] a[1,2] a[1,3]
a[2,1] a[2,2] a[3,2]
a[3,1] a[3,2] a[3,3] *)

In[1]:= mat[[All,2]] (* second column *)
In[2]:= mat[[2]] (* second row *)
In[3]:= mat[[2,All]] (* second row *)

In[1]:= Eigenvalues[mat]

In[1]:= Eigenvectors[mat]

In[1]:= Eigensystem[mat]

C.13 Miscellanea

In[1]:= Clear[a, b, c] (* clear values + defs for symbols *)
In[1]:= Remove[a, b, c] (* remove symbols cpompletely *)

(* I have no clue what the differnce is.. *)

In[1]:= Permutations[{a, b, c}]

In[1]:= Print["Verdaustig"]
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