Exercise 1 The atanh function

There is no atanh function in Fortran for the inverse hyperbolic tangent. Change this.

Exercise 2 The factorial function using recursion

(a) Write a Fortran function that recursively computes the factorial n ! of a non-negative integer n.
(b) Use that function to tabulate n ! for $n=0 . .22$.

Exercise 3 Complex numbers - polar representation

Using only real arithmetic and the atan function,
(a) write a F90 subroutine that converts the real and imaginary parts x and y of a complex number z to modulus r and phase (argument) φ :

$$
z=x+\mathrm{i} y=r \mathrm{e}^{\mathrm{i} \varphi} .
$$

(b) Test your subroutine on $1, i,-1+i, 1+i, 1-i,-1-i$. If φ is incorrect, fix the subroutine using if-then-else.
(c) Write another subroutine for the same task using the atan2 function.

Exercise 4 Celestial mechanics

(a) Write a program that asks for mass M and radius R of a planet and prints out its first and second cosmic speeds v_{1}, v_{2}.
(b) Improve your program structurally by putting the calculation of the cosmic speeds into a subroutine.
(c) Print a table of v_{1} and v_{2} for all planets of our solar system, using the following data:

```
name = (/'Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', &
    'Uranus', 'Neptune', 'Pluto', 'Sedna' /)
mass = (/ 0.330, 4.87, 5.97, 0.642, 1899, 568 &
        86.8, 102, 0.0125, 0.004 /) ! unit: 1E24 kg
radius = (/ 2.44, 6.052, 6.378, 3.397, 0.071492, 60.268, &
    25.559, 24.764, 1.195, 0.8 /) ! unit: 1E6 m
```

