Deadline: Friday 4 February 2005

Question 1 Plotting data from a file
Get the file 'height.dat' from http://www.capca.ucalgary.ca/~wdobler/teaching/ phys499/programs/height.dat.
(a) Use gnuplot to plot h_stone (t) and h_bird (t) in one single graph.
(b) Write a gnuplot script to reproduce the following figure:

Different aspects of flight...

(c) Produce a PostScript plot of your graph and print it out.

Question 2 The Feigenbaum function
In the interval $x \in[-1,1]$, the universal Feigenbaum function $g(x)$ can be approximated by

$$
g(x)=a_{0}+a_{2} x^{2}+a_{4} x^{4}+a_{6} x^{6}+a_{8} x^{8}+\ldots
$$

with

$$
\begin{aligned}
a_{0} & =1, \\
a_{2} & =-1.5276329970, \\
a_{4} & =0.1048151948, \\
a_{6} & =0.0267056705, \\
a_{8} & =-0.0035274096, \\
a_{10} & =0.00008160097, \\
a_{12} & =0.00002528508, \\
a_{14} & =-2.55632 \times 10^{-6} .
\end{aligned}
$$

For $|x|>1$, the functional relation

$$
g(x)=-\alpha g[g(x / \alpha)]
$$

can be used to map the argument nearer to $x \in[-1,1]$. Here

$$
\alpha=2.502907875096 \ldots
$$

is the Feigenbaum reduction parameter.
(a) Write a recursive F90 function that calculates $g(x)$.
(b) Embed this function as internal function into a main program that tabulates $g(x)$ for $-30 \geq x \geq 30$ and redirect the output to a file.
(c) Use Gnuplot to plot $g(x)$ with isotropic axis scaling.
(d) Would it be easy to re-write your function avoiding recursion?

References:

- M. J. Feigenbaum, "Quantitative Universality for a Class of Non-Linear Transformations", J. Stat. Phys. 19, 25-52 (1978).
- http://mathworld.wolfram.com/FeigenbaumFunction.html

Question 3 Allocatable and assumed-shape arrays
(a) Write a program that reads an integer n, then allocates and sets the values for the Hilbert
matrix \mathbf{H}_{n} of order n,

$$
\mathbf{H}_{n}=\left(\begin{array}{cccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots & \frac{1}{n+1} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \cdots & \frac{1}{n+2} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \frac{1}{n+3} & \cdots & \frac{1}{2 n-1}
\end{array}\right)
$$

Print out \mathbf{H}_{4}.
Hint: Use an allocatable array.
(b) Write a subroutine $f l i p(h)$ that flips the matrix horizontally and apply it to \mathbf{H}_{n} to get

$$
\left(\begin{array}{ccccc}
\frac{1}{n} & \cdots & \frac{1}{3} & \frac{1}{2} & 1 \\
\frac{1}{n+1} & \cdots & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} \\
\frac{1}{n+2} & \cdots & \frac{1}{5} & \frac{1}{4} & \frac{1}{3} \\
\vdots & \cdots & \vdots & \vdots & \vdots \\
\frac{1}{2 n-1} & \cdots & \frac{1}{n+2} & \frac{1}{n+1} & \frac{1}{n}
\end{array}\right)
$$

