Phys 499

Deadline: Friday 4 February 2005

Question 1 Plotting data from a file

Get the file 'height.dat' from http://www.capca.ucalgary.ca/~wdobler/teaching/ phys499/programs/height.dat.

- (a) Use gnuplot to plot h_stone(t) and h_bird(t) in one single graph.
- (b) Write a gnuplot script to reproduce the following figure:

(c) Produce a PostScript plot of your graph and print it out.

Question 2 The Feigenbaum function

In the interval $x \in [-1, 1]$, the universal Feigenbaum function g(x) can be approximated by

$$g(x) = a_0 + a_2 x^2 + a_4 x^4 + a_6 x^6 + a_8 x^8 + \dots$$

Exercises

with

a_0	=	1,
a_2	=	-1.5276329970,
a_4	=	0.1048151948,
a_6	=	0.0267056705,
a_8	=	-0.0035274096,
a_{10}	=	0.00008160097,
a_{12}	=	0.00002528508,
a_{14}	=	-2.55632×10^{-6} .

For |x| > 1, the functional relation

$$g(x) = -\alpha \, g[g(x/\alpha)]$$

can be used to map the argument nearer to $x \in [-1, 1]$. Here

 $\alpha = 2.502907875096...$

is the Feigenbaum *reduction parameter*.

- (a) Write a recursive F90 function that calculates g(x).
- (b) Embed this function as internal function into a main program that tabulates g(x) for $-30 \ge x \ge 30$ and redirect the output to a file.
- (c) Use Gnuplot to plot g(x) with isotropic axis scaling.
- (d) Would it be easy to re-write your function avoiding recursion?

References:

- M. J. Feigenbaum, "Quantitative Universality for a Class of Non-Linear Transformations", J. Stat. Phys. 19, 25–52 (1978).
- http://mathworld.wolfram.com/FeigenbaumFunction.html

Question 3 Allocatable and assumed-shape arrays

(a) Write a program that reads an integer n, then allocates and sets the values for the Hilbert

$$\mathbf{H}_{n} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots & \frac{1}{n+1} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \cdots & \frac{1}{n+2} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \frac{1}{n+3} & \cdots & \frac{1}{2n-1} \end{pmatrix} .$$

Print out \mathbf{H}_4 .

Hint: Use an allocatable array.

(b) Write a subroutine flip(h) that flips the matrix horizontally and apply it to \mathbf{H}_n to get

$\left(\begin{array}{c} \frac{1}{n} \end{array}\right)$		$\frac{1}{3}$	$\frac{1}{2}$	1
$\frac{1}{n+1}$		$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$
$\frac{1}{n+2}$		$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$
÷	· · ·	:	:	:
$\left(\frac{1}{2n-1}\right)$		$\frac{1}{n+2}$	$\frac{1}{n+1}$	$\left \frac{1}{n}\right $