## Deadline: Thursday 27 January 2005

## Question 1 F90 "essay"

Put a short essay on
on the Web forum.
Guidelines:

- Keep your posting concise, but provide enough context for the others to understand your points.
- Aim at 30 (maximum 40) lines of text (excluding code examples ans links) as seen in the Preview window.
- Include code examples that demonstrate the technique / feature, etc. Keep the examples short, but non-trivial.
- Include a few useful links of web resources at the end.


## Question 2 Free fall

Imagine you stand in the middle of the Albertan prairie and throw a stone (almost) vertically up with initial speed $v_{0}=15 \mathrm{~m} / \mathrm{s}$.
(a) How does height $z$ evolve as a function of time $t$ ?
(b) Write a F90 function height ( $\mathrm{t}, \mathrm{v} 0, \mathrm{~g}$ ) that implements this relationship and verify it gives the correct result for $t=2 \mathrm{~s}$ and $t=4 \mathrm{~s}$.
(c) Write a F90 program that prints a table of the form

```
# Ballistic flight of stone; g=const, neglecting friction
# Parameters: g = 9.81 [m/s], v0 = 15.00 m/s
#
\# t [s] z [m]
# 0.00 0.0000
#
    0.20 ......
# 0.40 ......
#
# . .
#
# 5.00
```

(d) Remember that you are not drilling for oil. So make sure the stone does not dig a deep hole.

Question 3 Binomial coefficients by recursion
The binomial coefficients $\binom{n}{k}$ for integers $n \geq 0, k$ are completely defined by the relations

$$
\begin{align*}
\binom{n+1}{k} & =\binom{n}{k-1}+\binom{n}{k}  \tag{1}\\
\binom{0}{0} & =1,  \tag{2}\\
\binom{0}{l} & =0 \quad \forall l \neq 0 \tag{3}
\end{align*}
$$

(a) Write a recursive function binom $(\mathrm{n}, \mathrm{k})$ that implements these relations and tabulate the binomial coefficients (i.e. produce some sort of Pascal triangle).
(b) Is this way of building the Pascal triangle efficient? Suggest a more efficient method.

