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Introduction

In our scientific education, we grow up with many examples of analytically solv-
able problems; most of them are described by linear differential equations, since
only for linear equations a systematic theory for constructing solutions is avail-
able. While analytically tractable problems are much more instructive and allow
far deeper understanding than other problems, they still represent just a subset
of measure zero of the full class of interesting physical problems. For all the rest,
we have basically just one choice — to solve them numerically.

Pioneered in the 1950s (and even before, as far as the theoretical basis is con-
cerned) and initially (ab)used for the creation of devices for mass-destruction,
computational physics, and in particular the numerical solution of partial dif-
ferential equations (most importantly the equations of hydrodynamics), is now a
well-established approach to solve complicated, nonlinear problems, which can-
not be successfully addressed by other methods.

This does however not mean that the analytical approach is outdated in any
sense. Good numerical modelling is only possible with good analytical skills and
physical understanding. Moreover, the usefulness of a numerical code may cru-
cially depend on choosing the right variables and applying the right idealisations
in the model — both of which require analytical penetration of the physics in-
volved. After all, this is just what physics itself is all about: finding minimal
models of a physical system and describing it using the clearest concepts and
most efficient variables.

Scheduled with only one lecture block per week during a short semester, the
present lecture course can only scratch the surface of numerical methods and
computational physics. This implies that only a few central concepts of numer-
ical mathematics and of the programming language (in our case IDL ) will be
explicitly introduced, and even these will just be discussed in an application-
oriented fashion. Those students previously exposed to the extensive volumes of
literature on numerical methods might consider this an advantage.

The course will address a range of astrophysical problems, from celestial me-
chanics over hydrodynamics and magnetohydrodynamics to (some very special
questions of) general relativity. While fluid dynamics will play a prominent role,
the problems solved will never go beyond one-dimensional problems (i. e. one
space dimension, plus time-dependency); a few problems will even be technically
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‘zero-dimensional’, like the N -body problem we will start with, or the Friedman
equations, which are both described by ordinary differential equations. One rea-
son for this restriction is that the interactive tools we will use are not the most
efficient ones, and dealing with multidimensional problems one would eventu-
ally work with compiled languages like Fortran 90 . Moreover, visualisation and
analysis of results becomes increasingly complex if more than one space dimen-
sion is involved.

If you really want to learn how to solve multi-dimensional problems, the meth-
ods you will acquire in the present course will provide a good starting point. A
number of scientifically relevant fluid dynamics codes (some of them including
magnetic fields, radiative transfer, or forced turbulence) are based on exactly the
methodology we will apply in one space dimension.

The numerical experiments and calculations for this course will be programmed
in IDL (Interactive Data Language), a proprietary software package that is quite
popular in astronomy. This choice has mostly historical reasons and IDL could
be replaced by any other tool that (a) provides a full-featured programming lan-
guage, including basic plotting functions, (b) can be used interactively, and (c)
provides array syntax to compactly and efficiently manipulate arrays of data.

The best alternative to IDL is probably PerlDL , an array extension to the pow-
erful high-level programming language Perl .1 Other options (although at least
some of them are far slower on some tasks) are Matlab -derivates such as Octave
or Scilab .

The one basic message this course is trying to spread is that, using the right
tools, the numerical solution of differential equations in general, and the par-
tial differential equations of hydrodynamics in particular, is in fact something
natural and simple.

1 For users insisting on stricter morphology (‘less line-noise’), Python-numeric tries to fill a
similar gap, although it does not appear to have a considerable user community.



Chapter 1

Numerical Methods I – ordinary differential
equations

1.1 Time stepping schemes

Explicit systems of ordinary differential equations (ODEs)

dyi

dt
= Fi(yk, t) (1.1)

are solved by time stepping methods which, given the state vector yi(t0) at a
given time t0, yield an approximation to the state vector at time t0+δt, evaluating
the right-hand side F (·, ·) one or several times in the process. Multi-step methods
(predictor-corrector schemes) additionally use state vectors from a few previous
time steps, but we will focus on single-step methods here.

1.2 Euler scheme

The simplest and most transparent (and often also the least efficient) time step-
ping scheme is the Euler scheme. Here the time derivative dy/dt in Equ. (1.1) is
approximated by a forward difference

dy

dt
(tn) 7−→ y(tn+δt)− y(tn)

δt
, (1.2)

and the resulting scheme takes the form

y
(n+1)
i = y

(n)
i + δt Fi

(
y

(n)
k , tn

)
+ O

(
δt2

)
, (1.3)

where y(n) ≡ y(tn).

The Euler scheme (1.3) is a first-order scheme, i. e. the error when integrating
over a finite time T is

R =
T

δt
O

(
δt2

)
= O (δt) . (1.4)

See Fig. 1.1 for an illustration of Euler stepping.
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Figure 1.1: Comparison of time stepping schemes of different order for a few steps of Eq. (1.7).
Top left: δt = 0.25; top right: δt = 0.5; bottom: δt = 1.

1.3 Runge–Kutta schemes

A much more accurate class of single-step schemes are the Runge–Kutta
schemes. In these schemes, a first Euler step is consecutively improved by evalu-
ating the right-hand side Fi(yk, t) several more times for particular arguments yk

and t. There are many Runge–Kutta schemes in use; the best way to familiarise
with a given scheme is to pick a simple, not too trivial differential equation and
work through a few time steps with a calculator. A convenient sample ODE is

dy

dt
= y + t ; t0 = 0 , y(t0) = 0 , (1.5)

which has the exact solution

y(t) = et − 1− t . (1.6)

Below, we give a few schemes, two of which we will use in the future. A compar-
ison of different schemes for two different time steps is shown in Fig. 1.1.
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A second-order scheme (mostly for illustration). The most obvious improve-
ment over the Euler scheme is to use the central difference operator

dy

dt
(tn + δt/2) 7−→ y(tn+δt)− y(tn)

δt
, (1.7)

which, unlike (1.2), is second-order accurate. But in order to apply this for time
stepping, we need some estimate for dy

dt
(tn + δt/2). I turns out that a first-order

estimate will do here, thus we can use an Euler step of width δt/2, yielding

y(t0 + δt/2) ≈ y1 = y(t0) + δtF (y(t0), t(0)) . (1.8)

With this, we then obtain the second-order estimate

y(t0 + δt) ≈ y(t0) + δtF (y1, t + δt/2) . (1.9)

A more concise representation of this scheme is given by the following tableau

t y

t0 y0 k1 = δtF (y0, t0)

t1 = t0 + 1
2
δt y1 = y0 + 1

2
k1 k2 = δtF (y1, t1)

t = t0 + δt y = y0 + k2 + O (δt3)

The scheme requires two evaluations of the right-hand side per step and is
second-order accurate. It is rarely used in practise, as opposed to the third- and
fourth-order schemes given below.

A third-order scheme. We will use this scheme for time-stepping partial differ-
ential equations later, because it requires less memory than many comparable
schemes.

t y

t0 y0 k1 = δtF (y0, t0)

t1 = t0 + 8
15

δt y1 = y0 + 8
15

k1 k2 = δtF (y1, t1)

t2 = t0 + 2
3
δt y2 = y0 + 1

4
k1 + 5

12
k2 k3 = δtF (y2, t2)

t = t0 + δt y = y0 + 1
4
k1 + 0 · k2 + 3

4
k3 + O (δt4)

When integrating over a finite time, the error term will be

R =
T

δt
O

(
δt4

)
= O

(
δt3

)
. (1.10)

The “classical’ fourth-order Runge–Kutta scheme. This scheme is very popu-
lar for ODEs and systems of ODEs. For PDEs, it may well deliver more accuracy
than is compatible with the space discretisation, so it may be better to use a
3rd-order scheme only.
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Figure 1.2: Relative error of one Runge–Kutta step applied to Eq. (1.7) [but with t0 = 1] as a
function of the time step δt. The dashed line shows a dependency ∼ δt5 for comparison.

t y

t0 y0 k1 = δtF (y0, t0)

t1 = t0 + 1
2
δt y1 = y0 + 1

2
k1 k2 = δtF (y1, t1)

t2 = t0 + 1
2
δt y2 = y0 + 1

2
k2 k3 = δtF (y2, t2)

t3 = t0 + δt y3 = y0 + k3 k4 = δtF (y3, t3)

t = t0 + δt y = y0 + 1
6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4 + O (δt5)

Figure 1.2 shows the relative error

δyrel ≡
∣∣∣∣yRK − yexact

yexact

∣∣∣∣
for one time step of the classical 4th-order Runge–Kutta scheme applied to our
reference problem (1.7), but with the initial condition t0 = 1, y0 = et0 − 1− t0.

Another fourth-order scheme. The classical scheme given above is by no
means the only scheme involving four evaluations of the right-hand side. Here’s
another one; none of the schemes of a given order is a priory better than another,
and schemes may be optimised for special requirements.
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t y

t0 y0 k1 = δtF (y0, t0)

t1 = t0 + 1
3
δt y1 = y0 + 1

3
k1 k2 = δtF (y1, t1)

t2 = t0 + 2
3
δt y2 = y0 − 1

3
k1 + k2 k3 = δtF (y2, t2)

t3 = t0 + δt y3 = y0 + k1 − k2 + k3 k4 = δtF (y3, t3)

t = t0 + δt y = y0 + 1
8
k1 + 3

8
k2 + 3

8
k3 + 1

8
k4 + O (δt5)

1.3.1 Embedded Runge–Kutta schemes

For applications which require high accuracy (like some of the N -body problems
discussed in Chapter 2), tight control over the time step is necessary to ensure
the integration remains sufficiently accurate even when dramatic things (like
close encounters of two bodies) happen. This can be achieved by so-called embed-
ded Runge–Kutta schemes. For details, see Press et al. (1992, 1996) or Pozrikidis
(1998)1.

1But beware of a typo in one of the coefficients
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Chapter 2

The 3-Body Problem

2.1 The N -body problem

Consider the motion of N point masses mi subject to no other forces than their
mutual gravity, described by Newton’s gravity law. The equation of motion for
the i-th particle is

d2xi

dt2
= −G

N∑′

j=1
j 6=i

mj
xi−xj

|xi−xj|3
. (2.1)

For N = 2, the solution of this system of equations is given by Keplerian motion
of the two masses: Relative to their centre of mass, they move on conic sections
and their orbits are either bound or unbound, depending on the sign of total
energy.

For N ≥ 3, only quite special solutions are known. While substantial interest
in the long-term fate of the Solar system has produced elaborate perturbation
methods and Lagrange’s famous quote “Sire, je n’avais pas besoin de cette hy-
pothèse,” even the stability of this billion-year old N -body system has been ques-
tioned. Today, most of the investigations in N -body celestial mechanics are car-
ried out by numerical integration of the system (2.1), be it directly, be it the
numerical integration of equations for orbital elements, which are based on per-
turbation analysis.

2.1.1 Degrees of freedom

Historically, the case N = 3 has attracted much attention, culminating in a prize
offered by the King of Sweden and Norway in 1887 which was won by Poincaré
for showing that the problem cannot be solved in closed form — at least not
in a manner analogous to the solution of the two-body problem. In fact, series
solutions have been given for the three-body problem, but none of them is of any
use for practical purposes.

So what makes three bodies so much more difficult to describe than two? The
N -body problem possesses N×3×2 degrees of freedom, resulting from motion in

9
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three dimensions, described by second-order differential equations. For N = 2,
this implies 12 degrees of freedom, while for N = 3 there are already 18.

On the other hand, this multi-dimensional phase space is not fully accessible to
the system, its trajectory being restricted to hypersurfaces defined by the values
of certain constants of motion. The obvious constants of motion (discussed in
more detail in § 2.1.2 below) are

i) energy (1),

ii) momentum (3) and (initial) position of the common centre of mass (3),

iii) angular momentum (3),

listed here together with the number of conditions they impose. Together they
neutralise 10 degrees of freedom and for the two-body problem there remain
just two. The resulting second-order problem can be then be solved analytically;
alternatively, one more degree of freedom can be eliminated by the Lenz–Runge
vector as eleventh constant of motion.1

For the three-body problem, on the other hand, the ten invariants still leave
eight degrees of freedom. And, as was shown by Bruns and Poincaré, there are no
other (independent) invariants which are algebraic or even analytic in xi and ẋi

(apart from the Jacobi invariant in the case of the restricted three-body problem,
see below). Thus, there is no hope that the three-body problem can be solved in
a manner analogous to the two-body problem.

2.1.2 Conserved quantities

In this section, we derive the ten conserved quantities mentioned above for the
N -body problem. These invariants are connected to fundamental symmetries of
the laws of mechanics and are conserved for arbitrary central (potential) forces.
Nevertheless it is instructive to derive them for the special case of the 1/r poten-
tial.

Energy
The potential energy of the N -body system is

Epot = −1

2

N∑′

i,j=1
i6=j

G mimj

|xi−xj|
, (2.3)

1 For the two-body problem, the Lenz–Runge vector is given by

R = L× (ẋ2−ẋ1) + Gm1m2
x2−x1

|x2−x1|
, (2.2)

where L = m1x1 × ẋ1 + m2x2 × ẋ2 denotes total angular momentum. Although all three compo-
nents of R are conserved, only its azimuth in the plane perpendicular to L yields an additional
constraint (the modulus |R|, e. g., can be expressed in terms of the other constants of motion).
Unlike the other ten invariants, the Lenz–Runge vector is specific to the 1/r potential.
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so the rate of change of Epot is, by virtue of the product rule,

d

dt
Epot = −1

2

∑′

i,j

G mimj

(
dxi

dt
· ∇i

1

|xi−xj|
+

dxj

dt
· ∇j

1

|xi−xj|

)
. (2.4)

Interchanging i ←→ j, we see that the two terms in the bracket are identical;
moreover, we know from potential theory that

∇ 1

|x|
= − x

|x|3
and thus ∇i

1

|xi−xj|
= − xi−xj

|xi−xj|3
, (2.5)

so we can write
d

dt
Epot =

∑′

i,j

G mimjvi ·
xi−xj

|xi−xj|3
. (2.6)

From the equation of motion (2.1), we can obtain a similar expression by multi-
plying that equation by mivi, which yields

mivi · v̇i =
d

dt

(mi

2
v2

i

)
= −G

∑′

j

mimjvi ·
xi−xj

|xi−xj|3
. (2.7)

Summing this up over all indices i, we find that

dEkin

dt
=

d

dt

∑
i

mi

2
v2

i = − d

dt
Epot , (2.8)

thus
Etot = Ekin + Epot = const (2.9)

Motion of the centre of mass; momentum
The position of the centre of mass is

X ≡ 1

M

N∑
i=1

mixi , where M ≡
N∑

i=1

mi (2.10)

is the total mass of the system. Taking the second time derivative, we find that

M
d2X

dt2
=

∑
i

mi
dvi

dt
= −G

N∑′

i,j=1
i6=j

mimj
xi−xj

|xi−xj|3
= 0 , (2.11)

because the expression subject to summation changes sign when i and j are
interchanged.

Integrating this twice, we get

X(t) = X0(t) +
P

M
t , (2.12)
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where
X0 = const (2.13)

is the initial position of the centre of mass and

P = M
dX

dt
=

∑
i

mivi = const (2.14)

is the total momentum of the system.

Angular momentum
The total angular momentum of the system is

L =
N∑

i=1

mixi × vi (2.15)

and has the time derivative

dL

dt
=

∑
i

mi (ẋi × vi + xi × v̇i) =
∑

i

mixi × v̇i , (2.16)

because ẋi × vi = vi × vi vanishes.

From the equation of motion (2.1), we get

mixi × v̇i = −G

N∑′

j=1
j 6=i

mimj
xi × (xi−xj)

|xi−xj|3
= G

∑′

j

mimj
xi × xj

|xi−xj|3
. (2.17)

Summation over i yields

N∑
i=1

mixi × v̇i = G
∑′

ij

mimj
xi × xj

|xi−xj|3
= 0 , (2.18)

because once again the expression under the summation sign is antisymmetric
in (i, j). Thus

L = const . (2.19)

2.2 Special solutions

In spite of what has been said so far, all hope must not be abandoned for the
three-body problem. While the general problem cannot be solved analytically,
certain special cases can, as has been shown by L. Euler and J. L. Lagrange
who were looking for form-invariant solutions, i. e. constellations for which the
relative distances Rij ≡ |xi−xj| have common time dependence,

Rij(t) = Rij(0)f(t) (2.20)
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Figure 2.1: Sketch of the special solutions of Euler (collinear solution, left panel) and Lagrange
(triangular solution, right panel). The three masses are m1 < m2 < m3; the common centre of
mass is indicated by the letter S.

and thus all angles remain the same.

They found two such solutions, the three masses being arranged either collinear,
or as an equilateral triangle; see Fig. 2.1 for an illustration. These solutions exist
for arbitrary mass ratios m1 : m2 : m3 and for non-circular orbits. For the sake
of simplicity, we will however only discuss them for the restricted three-body
problem, where one of the masses is negligible compared to the other two, and
we will focus on circular orbits. We will call the body with largest mass (m1) the
Sun, and the second heavy body Jupiter — although we will take the freedom to
vary the mass ratio m2/m1.

Hill found another class of solutions where two of the bodies form a close binary
system and interact with the distant third as one body. This configuration is
always stable and is used to describe the system Earth–Moon–Sun. More gener-
ally, all stable N -body configurations with similar masses found in nature seem
to have this hierarchical structure of tight two-body systems interacting with
other two-body systems like single masses. However, we will now focus on Eu-
ler’s and Lagrange’s solutions.

2.2.1 The restricted, circular three-body problem

Under the assumptions that m3 � m2 ≤ m1 and that m1 and m2 move on circu-
lar orbits in the x-y plane, there are 5 points (libration points, i. e. equilibrium
points) where the massless body m3 is in force equilibrium (see Fig. 2.2). Three
of these (labelled L1, L2 and L3 in Fig.2.2) represent Euler’s collinear solution.
The existence of these equilibrium points is pretty obvious, but they are always
unstable. The other two (L4 and L5) are far less obvious, but they can be stable,
as we will discuss below. They correspond to the three bodies moving as an equi-
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Figure 2.2: The five Lagrangian libration points L1–L5 for the restricted three-body problem.

lateral triangle. If m2/m1 is relatively small, the massless particle will move on
Jupiter’s orbit, but is 60◦ ahead (L4) or behind (L5) Jupiter itself. Celestial bodies
in these positions have indeed been found; they are asteroids and are referred to
as Trojans. In fact, there is a finer distinction between Greeks (the ones ahead
of Jupiter) and the proper Trojans (the ones lagging behind), but we will ignore
this, even more so since this naming scheme has not been applied strictly to the
individual asteroids.

2.2.2 Effective potential and Jacobi’s integral

We consider the circular, restricted 3-body problem. In this special case, the two
heavy masses are in rigid rotation around the centre of mass with constant an-
gular velocity

ω =

√
G(m1+m2)

a3
. (2.21)

It is natural to analyse the motion of m3 in a coordinate system corotating with
m1 and m2, with the centre of mass as origin and the z axis parallel to the angular
momentum vector. In this reference frame inertial forces appear in the equation
of motion for m3, which reads

ẍ = −Gm1
x13

r3
13

−Gm2
x23

r3
23

+ ω2ses︸ ︷︷ ︸
Fcent

− 2~ω × ẋ︸ ︷︷ ︸
FCor

, (2.22)

where s :=
√

x2+y2 is the cylindrical radius and es the corresponding unit vector,
xi3 ≡ x3−xi, ri3 ≡ |xi3|, and ~ω = (0, 0, ω) is the vector of angular velocity. The
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last two terms in Eq. (2.22) are the centrifugal and Coriolis force, respectively.
Equation (2.22) can be written as

ẍ + 2~ω × ẋ = −∇U , (2.23)

where

U(x, y, z) ≡ −Gm1

r13

− Gm2

r23

− 1

2
ω2s2 (2.24)

is the effective potential of the test mass m3.2

Multiplying Eq. (2.23) by v, we obtain

d

dt

v2

2
= − d

dt
U(x, y, z) , (2.28)

which implies that

J(x, ẋ) ≡ ẋ2

2
+ U(x) = const. (2.29)

The quantity J is called Jacobi integral and it represents the eleventh inte-
gral of motion for the restricted, circular three-body problem. As was shown by
Poincaré, no further algebraic integral of motion exists for this special case of
the three-body problem.

From this point on, we will consider the planar (restricted, circular) problem
only, i. e. the case where z = 0. This is a very natural special case, as the z-
dependence of the effective potential U(x) is such that there is always a restoring
force towards the x-y plane.

For a given trajectory, J is constant. Hence, all points where |v| = 0 (if they exist)
are located on lines U = J = const. Figure 2.4 shows lines of constant potential U
in the plane z = 0. Depending on the value of J , the body m3 can only access the
region where U(x) ≤ J ; it cannot cross the line U = J , because otherwise v would
become imaginary. This implies that if J is sufficiently small, the test mass will
be confined to the vicinity of either m1 or m2 forever, which is in accordance with
Hill’s result and is illustrated by the stability of planet–satellite systems.

2 In Cartesian coordinates this would be

ẍ− 2ωẏ = − ∂U

∂x
, (2.25)

ÿ + 2ωẋ = − ∂U

∂y
, (2.26)

z̈ = − ∂U

∂z
, (2.27)
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Figure 2.3: Surface plot of the effective potential U(x, y) for the planar, restricted, circular three-
body problem; masses are m1 = 0.8,m2 = 0.2,m3 = 0.
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Figure 2.4: Contour lines of the effective potential U(x,y) for the planar, restricted, circular three-
body problem; Left: masses m1 = 0.8,m2 = 0.2; right: m1 = 0.97,m2 = 0.03; in both cases m3 = 0.
The five libration points are indicated by crosses; the centre of mass is at (0, 0).
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2.2.3 Stability of libration points

Figure 2.3 shows that none of the libration points corresponds to a minimum of
the effective potential U : L1–L3 are saddle points, while L4 and L5 are maxima
of U . Thus, none of these points seems to allow a stable equilibrium. It is easy to
show generally that the effective potential U(x) of a rigidly rotating mass distri-
bution cannot have a minimum in a point where density % vanishes, i. e. outside
the gravitating bodies. To see this, we recall that the gravity potential Φ(x) sat-
isfies Poisson’s equation

∆ Φ = −4πG% . (2.30)

In a reference frame rotating at angular momentum ω, the effective potential is

U(x) = Φ(x)− 1

2
ω2s2 ; (2.31)

the Laplacian of U is

∆ U = ∆ Φ− ω2

2
∆ s2 = ∆ Φ− 2ω2 . (2.32)

Now if % = 0, the Laplacian (∂xx +∂yy +∂zz)U = −2ω2 is negative and thus at least
one of the second derivatives ∂xxU , ∂yyU , ∂zzU must be negative, which implies
instability in the corresponding direction.

This does however not mean that none of the libration points can be stable.
The Coriolis force — which did not enter this analysis at all — can play an
important role in stabilising a configuration by preventing m3 from “rolling down
the slope of the potential”. A conclusive stability investigation will be based on
linear stability analysis of Eq. (2.23) by making the ansatz

(x, y, z)(t) = eγt(x̂, ŷ, ẑ) , (2.33)

linearising the potential U around the equilibrium point and solving the result-
ing linear eigenvalue problem for the growth rate γ. If there exists an eigenvalue
γ with positive real part, then the corresponding point is unstable, otherwise it
is (linearly) stable.

We will not carry out this analysis here, but just report that L1, L2 and L3 turn
out to be always unstable, while L4 and L5 are stable, provided that

m2/(m1+m2) <
1−

√
23/27

2
≈ 0.0385 , (2.34)

or m2/m1 < (25 −
√

621)/2 ≈ 0.0401, and unstable if m2/m1 is larger. The mass
ratio of Jupiter and the Sun is mX/m� ≈ 1.9×1027 kg/2.0×1030 kg ≈ 0.00095; cor-
respondingly, the orbits of the Trojans and Greeks are stable, at least as far as
our assumptions are justified for this system. In reality, Jupiter’s orbit is not cir-
cular and Saturn and other planets have an influence as well, so our conclusion
must be taken cum grano salis.
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Figure 2.5: Two Trojan trajectories for m2/m1 = 0.001 in the corotating reference frame. Left:
moderate perturbation relative to the equilibrium position. Right: strong perturbation. The as-
terisk (*) marks the Sun’s position, the diamond (�) marks Jupiter; Jupiter’s orbit is shown as a
dashed line.

2.2.4 Trajectories of Trojans

The Trojans move on complicated trajectories which (for small amplitude of the
initial perturbation) are bounded by a kidney-shaped envelope. Figure 2.5 shows
two sample trajectories for a mass ratio m2/m1 similar to that of Jupiter and the
Sun. The second figure shows a trajectory with a stronger perturbation rela-
tive to the equilibrium point. Note how the trajectory fills a considerable part of
Jupiter’s orbit.

2.2.5 Chaos in the restricted three-body problem

If m1 = m2, the two heavy bodies will always have the same distance from the
centre of mass; this special case is referred to as Copenhagen problem. In this
case, if m3 initially moves along the z-axis (which passes through the centre of
mass) and its velocity has only a z-component, then it will remain on this axis
forever, because the horizontal forces cancel for symmetry reasons. The resulting
one-dimensional problem is still far from trivial and was found to be chaotic for
certain eccentricities and initial conditions.

2.2.6 Recent results

New solutions to the three-body or N -body problem are still being
found, see http://www.ams.org/notices/200105/fea-montgomery.pdf, http://

www.maia.ub.es/dsg/3body.html, where ‘Figure-Eight’ solutions and http://

www.maia.ub.es/dsg/nbody.html, where more complex “choreographies” are dis-

http://www.ams.org/notices/200105/fea-montgomery.pdf
http://www.maia.ub.es/dsg/3body.html
http://www.maia.ub.es/dsg/3body.html
http://www.maia.ub.es/dsg/nbody.html
http://www.maia.ub.es/dsg/nbody.html
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Figure 2.6: “Figure-eight” solution of the three-body problem. Parameters are m1 = m2 = m3;
the solutions has vanishing total angular momentum.

cussed. Figure 2.6 shows the Figure-eight solution (see Simó; 2002, for the cor-
responding initial conditions). Figures 2.6 to 2.10 show some other “choreo-
graphic” solutions taken from C. Simó’s website (http://www.maia.ub.es/dsg/
nbody.html).

These recent solutions (at least the Figure-eight one) are stable in a weak sense
(“KAM-stable”). This means that most solutions with initial conditions close to
the orbit stay close to it forever. The density of those few that don’t tends to
zero as one approaches the figure-eight solution. And the unstable trajectories
diverge only very slowly from the figure eight.

http://www.maia.ub.es/dsg/nbody.html
http://www.maia.ub.es/dsg/nbody.html


20

−0.4

−0.2

0

0.2

0.4

−1 −0.5 0 0.5 1

Five bodies on four loops, the external ones folded inside (14)

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−1.5 −1 −0.5 0 0.5 1 1.5

Five bodies on the supersupereight (the 4−chain) (05)

Figure 2.7: “Choreographic” solutions of the 5-body problem. Top: the ‘5-body 4-chain’; bottom:
the ‘5-body 4-loop’.
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Figure 2.8: “Choreographic” solutions of the 11-body problem. Top: N -gon solution (a generali-
sation of Lagrange’s triangular solution). Bottom: the ‘11-body 10-chain’; Note that this figure’s
aspect ratio is not correct.
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Figure 2.9: “Floral” solutions of the 7- and 8-body problem. Left: ‘7-body sunflower solution’;
right: ‘8-body daisy solution’.
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Chapter 3

Charged Particles in the Ionosphere

The equation of motion for a particle of electric charge q and mass m in a mag-
netic field is

m
d2x

dt2
= m

dv

dt
= qv ×B , (3.1)

where v = dx/dt is the velocity vector, and B denotes the magnetic flux density.

3.1 Point charge in a homogeneous B-field

In a homogeneous magnetic field B = Bez, the equation of motion (3.1) becomes

m
dvx

dt
= qvyB , (3.2)

m
dvy

dt
= −qvxB , (3.3)

m
dvz

dt
= 0 . (3.4)

The z-component thus decouples from x and y. Its solution describes a uniform
motion. The kinematics in the plane perpendicular to the magnetic field is con-
veniently solved for in terms of the complex variable

w ≡ vx + ivy , (3.5)

for which we obtain the equation

m
dw

dt
= −iqwB . (3.6)

The solution is
w = v⊥e∓iωLt , (3.7)

where
ωL ≡

|q|B
m

(3.8)

is called the Larmor frequency, cyclotron frequency, or gyration frequency. The
upper sign is for a particle with positive charge, the lower sign for a particle with

23
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negative charge. This solution describes a rotation of the velocity vector around
the direction of B,

vx = v⊥ cos ωL(t−t0) , (3.9)
vy = ∓v⊥ sin ωL(t−t0) , (3.10)

where v⊥ and t0 are determined from the initial conditions (v⊥ = (v2
x + v2

y)
1/2 for

all t). We set t0 = 0; for a convenient choice of the origin, the trajectory of the
particle is then given by

x = x0 +
v⊥
ωL

sin ωLt , (3.11)

y = y0 ±
v⊥
ωL

cos ωLt , (3.12)

z = z0 + vz,0t . (3.13)

This describes a helix winding around a central field line. The radius

rL =
v⊥
ωL

(3.14)

is called Larmor radius. The sense of the gyration is such that the electric cur-
rent that arises from the moving charged particle constitutes a source for a mag-
netic field that is opposite to the original field (Fig. 3.1). Thus, charged particles
in a magnetic field behave “diamagnetically”.

t=8.9899998
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Figure 3.1: Gyration of charged particles in parallel homogeneous magnetic and electric fields.
Left: View parallel to B (the field points toward the viewer). The left particle is negative, the
right positive; the charge per mass of the left particle is 4 times larger, both particles have the
same v⊥. Right: View perpendicular to the field; the acceleration caused by E (in +z-direction)
depends on the particle charge.
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3.2 Homogeneous magnetic and electric fields

We take again a magnetic field in the z-direction, B = Bez. In general, then, the
electric field, E, has components in all three directions. The equation of motion
is

m
d2x

dt2
= m

dv

dt
= q(E + v ×B) . (3.15)

For the z-component we have only the electric force, which yields an accelerated
motion (as shown in Fig. 3.1 for the case of an electric field parallel to B),

vz = vz,0 +
q

m
Ezt , (3.16)

and
z = z0 + vz,0t +

q

2m
Ezt

2 . (3.17)

The x- and y-components are again combined into a complex equation; using
Ec = Ex + iEy we obtain

m
dw

dt
= q(Ec − iwB) . (3.18)

This equation has the exact solution

w = v⊥e∓iωLt +
Ec

iB
, (3.19)

or

vx = v⊥ cos ωLt +
Ey

B
, (3.20)

vy = ∓v⊥ sin ωLt− Ex

B
. (3.21)

This solution consists of the gyration of the particle around the lines of force, as
before, and – additionally – of a drift

vD = (
Ey

B
,−Ex

B
, 0) =

E×B

B2
. (3.22)

This drift is called the E × B drift. It is in the same direction for positive and
negative particles. Notice that this time v⊥ is again a constant of integration,
but is not identical to (v2

x + v2
y)

1/2. Notice also that the drift is only obtained for
B 6= 0; if B = 0 then we must return to the original equation of motion which
yields the well-known accelerated motion of a charged particle in an electric
field. In the Earth’s ionosphere, the particles gyrate in the magnetic field, and
the E×B drift is superposed to this gyration.
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Figure 3.2: The E × B drift. The magnetic field is towards the viewer, the electric field in the
x-direction. Thus, according to (3.22), both particles drift into the −y-direction, with the same
speed, −Ex/Bz.

3.3 Inhomogeneous magnetic field

Next we consider the case where E = 0, and B is in the z-direction, but with a
dependence perpendicular to B. In this case we shall obtain only an approximate
solution, in contrast to the previous two sections where the equation of motion
was solved exactly. We choose the coordinate system such that

B = ( 0, 0, B(y)) (3.23)

The y-dependence of B shall be weak. Therefore we expand

B(y) = B0 + (y − y0)
dB

dy
, (3.24)

where the field gradient dB/dy is a small constant in the sense rL|dB/dy| � |B0|.
That is, the length over which the field changes noticeably is large compared to
the Larmor radius. The coefficient, y−y0, of the small quantity can then be taken
from the Larmor orbit (3.12) in a homogeneous field, so that

B = B0 ± rL cos ωLt
dB

dy
. (3.25)

The z-component of the equation of motion yields a uniform motion, which we
shall not consider further. The perpendicular components are

m
dvx

dt
= qvyB0 ± qvyrL cos ωLt

dB

dy
, (3.26)

m
dvy

dt
= −qvxB0 ∓ qvxrL cos ωLt

dB

dy
. (3.27)
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We seek a solution of the form

vx = v̄x + v⊥ cos ωLt , (3.28)
vy = v̄y ∓ v⊥ sin ωLt , (3.29)

i.e., a gyration plus a uniform mean motion. We substitute this into the two
equations, and average the equations over time. There is no contribution on the
left, and on the right only from the term that involves cos2 ωLt, with 1/2 as its
mean. Hence the result is

v̄x = ∓v⊥rL

2B0

dB

dy
, (3.30)

v̄y = 0 . (3.31)

We have obtained this result for a special choice of the coordinate system. The
general form is

vD = ±v⊥rL

2B2
0

(B×∇B) . (3.32)

This mean uniform motion is called the B × ∇B drift. This drift is in opposite
directions for positive (upper sign) and negative (lower sign) particles.
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Figure 3.3: The B×∇B drift. The magnetic field is in the positive z-direction, increasing with y.
Left: View parallel to B (the field points toward the viewer). The lower particle is negative and
drifts to the right, the upper is positive and drifts to the left, cf. (3.32). Right: View perpendicular
to B; the vertical motion is uniform and equal to the initial velocity component vz,0.

3.4 Curvature drift

So far we have dealt with magnetic fields that have straight lines of force, al-
though a field gradient perpendicular to the field was admitted. The Earth has
a field that is dipolar in a first approximation, and the field lines of this field are
curved. Particles that gyrate around such curved field lines will be subject to a
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centrifugal force. This leads to a drift that can be treated in analogy to the E×B
drift of Sect. 3.2.

Let v‖ be the velocity component in the direction of the magnetic field, and let
Rc be the radius of curvature of the field lines. The centrifugal force experienced
by a particle that tries to gyrate in its helix along the field is then mv2

‖/Rc or, in
vectorial form,

F =
mv2

‖

R2
c

Rc , (3.33)

where Rc is the vector that points from the center of curvature to the particle.
In order to obtain the curvature drift, we simply replace the electric force qE by
F. Hence the formula (3.22) is replaced by

vD =
mv2

‖

qB2

Rc ×B

R2
c

. (3.34)

Since in general the field lines are not circles, this result is only an approxima-
tion.

For the Earth’s magnetic field the field strength decreases with increasing dis-
tance. As the field is current-free, we can estimate the field gradient from the
condition curlB = 0: consider a system of cylindrical coordinates (s, φ, z) such
that s is the distance from the center of curvature, φ an azimuth in the plane
containing the field line about which the particle gyrates and the center of cur-
vature, and z perpendicular to that plane. The z-component of the current-free
condition then reads

1

s

∂

∂s
(sBφ) = 0 , (3.35)

or Bφ ∝ 1/s = 1/Rc. On the other hand, we have, approximately, |B| = Bφ; hence
|B| ∝ 1/Rc and

∇|B|
|B|

= −Rc

R2
c

. (3.36)

We use this to rewrite the B×∇B drift (3.32) in the form

vD = ±v⊥rL

2B

Rc ×B

R2
c

=
mv2

⊥
2qB2

Rc ×B

R2
c

. (3.37)

Combined with the curvature drift this yields

vD =
m

qB2

(
v2
‖ +

1

2
v2
⊥

)
Rc ×B

R2
c

. (3.38)

The two contributions are in the same direction. In the ionosphere, the drift is
westward for the positive ions, and eastward for the negative electrons (Fig. 3.6).
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Figure 3.4: Cut through an axisymmetric magnetic mirror. The z-axis is the axis of symme-
try. Although the field is nearly homogeneous at the lower boundary, the lines of force are not
equidistant because between two neighbouring axisymmetric surfaces is always the same mag-
netic flux. Left: A particle moving around the axis of symmetry. Right: Two particles outside the
axis of symmetry. The particles follow the field lines; the magnetic flux enclosed by their helical
motion is constant.

3.5 A magnetic mirror

In this section we consider another case of a magnetic-field inhomogeneity,
namely a field that varies along its own direction. Especially, the field shall be
rotationally symmetric around the z-axis, and the field strength shall increase
in the z-direction, so that the field lines form a kind of bottleneck. In cylindrical
coordinates (s, φ, z) the field is

B = ( Bs(s, z), 0, Bz(s, z)) . (3.39)

Consider a particle gyrating around the axis of symmetry. The z-component of
the equation of motion is

m
dvz

dt
= −qvφBs . (3.40)

The equation div B = 0 reads
1

s

∂

∂s
(sBs) +

∂Bz

∂z
= 0 , (3.41)

which can be used to express Bs in terms of Bz,

Bs = −1

s

∫ s

0

s′
∂Bz

∂z
(s′)ds′ . (3.42)

Now we restrict the attention to the approximate case where the field is pre-
dominantly in the z-direction, i.e., Bz ≈ B, with ∂B/∂z ≈ const.. Then Bs ≈
−(s/2)∂B/∂z, which we substitute into the equation of motion:

m
dvz

dt
=

qvφs

2

∂B

∂z
= ∓qv⊥rL

2

∂B

∂z
= −mv2

⊥
2B

∂B

∂z
. (3.43)
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Figure 3.5: Two particles that are trapped in a dipole magnetic field. The two orbits are projected
onto meridional planes 180◦ apart (left and right, respectively). Both particles are injected at the
equator with the same perpendicular velocity v⊥, but the particle on the left has a charge/mass
value that is three times that of the right particle.

Again the upper sign is for positive particles (where vφ = −v⊥), and the lower
sign is for negative particles (where vφ = v⊥). We have used here s = rL, because
a gyration around the axis of symmetry was considered.

Now we define the quantity

µ =
mv2

⊥
2B

, (3.44)

which is called the magnetic moment of the gyrating particle. We shall show
presently that, as the particle gyrates gradually into the bottleneck formed by
the magnetic field, µ remains approximately constant (the adiabatic invariant,
cf. Sect. 3.6). In this case the equation of motion has an integral,

vz = vz,0 −
µ

m

∂B

∂z
t . (3.45)

Since ∂B/∂z > 0, the velocity vz into the bottleneck decreases, and the wind-
ings of the helix become flatter. Its is even possible that vz changes its sign, i.e.,
the particle is reflected from the bottleneck. For this reason the field considered
in this section is also called a magnetic mirror. Imagine a field with two such
mirrors facing each other. The charged particles may be reflected back and forth
between these two mirrors, and so are effectively enclosed in the field, which is
also called a magnetic bottle.

The terrestrial magnetic field is approximately dipolar. Its strength increases
towards both magnetic poles. Hence there are two mirrors, although not directly
face to face (Fig. 3.5). Between the two mirrors the field is both inhomogeneous
(in the perpendicular direction) and curved. Therefore the particles enclosed in
the bottle are subject to the B×∇B drift as well as to the curvature drift.
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Figure 3.6: Two particles as in Fig. 3.5. The orbits are projected onto a cylindrical surface around
the Earth. The particle with the positive charge drifts westwards (left), the negative particle
drifts eastwards (right). Notice that magnetic north is at geographic south.

If the magnetic mirror consists of a field inhomogeneity that moves (with the
motion of a cloud in interstellar space, say), then the reflected particles can be
accelerated and gain energy from that motion. This is called the Fermi mecha-
nism, and has been proposed as a mechanism that leads to the high energies of
charged cosmic-ray particles.

3.6 Adiabatic invariants

3.6.1 The magnetic moment

The first adiabatic invariant is the magnetic moment µ that we have already
used in the preceding section. In order to show that µ is constant we return to
the equation of motion, which we write slightly more general by replacing vz by
v‖:

m
dv‖
dt

= −µ
∂B

∂z
. (3.46)

Now v‖ = dz/dt; multiplication of (3.46) by v‖ therefore yields

mv‖
dv‖
dt

=
m

2

dv2
‖

dt
= −µ

dB

dt
, (3.47)

or, since v2
‖ + v2

⊥ is a constant (the magnetic force is always perpendicular to the
motion and hence does not change the kinetic energy),

m

2

dv2
⊥

dt
= µ

dB

dt
. (3.48)



32

With the help of this equation we finally derive

dµ

dt
=

d

dt

(
mv2

⊥
2B

)
=

m

2B

dv2
⊥

dt
− mv2

⊥
2B2

dB

dt
=

1

B

(
m

2

dv2
⊥

dt
− µ

dB

dt

)
= 0 . (3.49)

From the constancy of µ the possibility of a reflection at the magnetic mirror
is readily seen: As B increases, so must v2

⊥, and this is at the expense of v2
‖

because the kinetic energy of the particle is fixed; thus v‖ may reach zero and
reverse its sign. On the other hand, particles with very large v2

‖ may penetrate
the bottleneck, and so get lost from the magnetic bottle.

Another result can easily be derived from the adiabatic invariant µ, namely that
the magnetic flux enclosed by the gyrating particle is constant:

Φ = πr2
LB = π

v2
⊥m2

q2B
=

2πm

q2
µ . (3.50)

Therefore, the helix described by the gyrating particle fits into a “mantle” of lines
of force.

The name “adiabatic invariant” is derived from the fact that, according to the ap-
proximations made, the particle experiences only a weak (or slow) change of the
field as it gyrates around the lines of force. The term is also used in thermody-
namics where a slow process carries a system through a sequence of equilibrium
states (in fact “quasi-static” would be the more appropriate adjective).

3.6.2 Two more adiabatic invariants

In a mechanical system that performs a periodic variation, with period T , with
respect to two generalized coordinates p and q the action integral over a full
period

I =

∮
p dq (3.51)

is invariant against a slow change of a parameter, say λ, on which the system
depends (see, e.g., Landau & Lifschitz, Theoretical Physics, Vol. I). The change
must be slow in the sense |Tdλ/dt| � |λ|. The integral I is called an adiabatic
invariant.

For a particle that gyrates in a magnetic field the slowly changing parameter
is the field strength; as seen from the particle on its path, the field strength
varies even in a time-independent field, due to its variation in space. The condi-
tion, then, is that the Larmor radius is small in comparison to the characteristic
length L of the field inhomogeneity. If the field does change with time, then the
characteristic time for that change must be long in comparison to the gyration
period, 2π/ωL.

For a charged particle in the ionosphere there are three periodicities: First, the
gyration around the lines of force, with p1 = mv⊥ and q1 the coordinate along
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the gyration circle; second, the North-South motion in form of a helix inside the
magnetic bottle, with p2 = mv‖ and q2 a coordinate along the magnetic field; and
third, the azimuthal drift (gradB + curvature), with p3 = vD and q3 the coordinate
along the path around the Earth. Hence

I1 = m

∮
v⊥ dq1 , (3.52)

I2 = m

∮
v‖ dq2 , (3.53)

I3 = m

∮
vD dq1 , (3.54)

are three adiabatic invariants (aside from a constant factor, I1 is the magnetic
moment µ). The integrals are taken over a full period of the three motions, re-
spectively.
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Chapter 4

Numerical Methods II – partial differential
equations

In this chapter, we will consider partial differential equations of the type

∂ty = F (y, ∂x, ∂
2
xy; x, t) (4.1)

and try to approximate the solution y = y(x, t). After discretising in x and t, the
values we are interested in are

y
(n)
l ≡ y(xl, tn) , (4.2)

where
xl = x0 + lδx , (4.3)

i. e. we use an equidistant grid in x. We are looking for explicit finite difference
schemes which give us a rule for constructing yl at a new time step from the
values at the previous step,

y
(n)
l 7−→ y

(n+1)
l (4.4)

(we are interested in single-step methods only).

We will use the advection equation

∂ty = −u ∂xy . (4.5)

with constant advection velocity u as a sample equation. The exact solution of
Eq. (4.5) is given by

y(x, t) = y(x−ut, 0) . (4.6)
Equation (4.5) is the simplest example of a hyperbolic equation, i. e. a transport
equation with finite transport speed. This is the class of equations one is primar-
ily interested in when doing hydrodynamics. We will often add a small diffusive
term to the right-hand side of hyperbolic equations, turning them formally into
parabolic equations; nevertheless, our major interest is in advection and wave
propagation, and it is reasonable to consider the problems we are dealing with
as hyperbolic.

Most of the results derived or outlined here for the simple advection equation
(4.5) still hold for other hyperbolic problems like the propagation of weak sound
waves.
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4.1 A low-order scheme

Approximate ∂x and ∂2
x by central finite differences. To second order in δx, this

yields

∂xyl =
yl+1 − yl−1

2δx
+ O

(
δx2

)
, (4.7)

∂2
xyl =

yl+1 − 2yl + yl−1

δx2
+ O

(
δx2

)
. (4.8)

(4.9)

Note that we use only values on one single mesh in x — we are using a ‘non-
staggered mesh’, which makes many things simpler. Applying this discretisation
to the right-hand side of Eq. (4.5) and applying first-order (Euler) discretisation
in time as in § 1.2, we can write

y
(n+1)
l − y

(n)
l

δt
= u

y
(n)
l+1 − y

(n)
l−1

2δx
, (4.10)

which yields an explicit formula for y
(n+1)
l ,

y
(n+1)
l = y

(n)
l −

u δt

δx

y
(n)
l+1 − y

(n)
l−1

2
. (4.11)

Press et al. (1996) state:

“The resulting finite-difference approximation [. . . ] is called the FTCS
representation (Forward Time Centred Space) [. . . ] It’s a fine example
of an algorithm that is easy to derive, takes little storage, and executes
quickly. Too bad it doesn’t work!”

Figure 4.1 shows how small scale structures eventually destroy the initial pat-
tern in the case of the advection equation (4.5), even for a very small time step
of δt = 0.0005. The perturbations grow faster if the time step is larger; obviously,
this scheme is unstable.

We can try three things to stabilise the scheme:

1. use higher spatial order;

2. use higher time order;

3. add viscosity.
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Figure 4.1: The O
(
δt, δx2

)
(first-order time step, second-order spatial derivatives) scheme applied

to the advection problem (4.5) with u = 1 and periodic boundary conditions. The time step is
extremely small (δt = 0.0005). The solid line shows the exact solution (identical to the initial
profile), while the crosses and dashed line show the numerical solution. Left: t=1 (i.e. the pattern
has travelled once through the interval [0, 1]. Right: t=10 (the pattern has travelled ten times
through the interval).

4.2 Higher-order schemes

4.2.1 Higher spatial order

Ansatz for nth order finite difference stencil:

y′0 =

n/2∑
p=−n/2

wpyp + O (δxn) ≡ D(1)y0 + O (δxn) , (4.12)

y′′0 =

n/2∑
p=−n/2

w̃pyp + O (δxn) ≡ D(2)y0 + O (δxn) , (4.13)

where n = 2, 4, 6, . . . Figure 4.2 gives a schematic view of the information used
for a fourth-order (five-point) finite-difference stencil.

x

x0
x
−1x

−2 x1 x2

Figure 4.2: Sketch of a 5-point finite-difference stencil.

We determine the coefficients wp, w̃p from the requirement that the exact values
of the derivatives are retrieved for all polynomials of up to nth order, and in
particular for the monomials y = 1, y = x, y = x2, . . . , y = xn at x0 = 0. As
an example, we derive the conditions for the 4th-order (5-point) first derivative
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Table 4.1: Coefficients wk = pk/q = −w−k and residual term R for finite difference approx-
imations of order n to the first derivative, y′0 =

∑
k wkyk + R. The point ξ is in the interval

x−n/2 < ξ < xn/2.

n p0 p1 p2 p3 p4 p5 q R

2 0 1 2δx −1

6
y(3)(ξ)δx2

4 0 8 −1 12δx
1

30
y(5)(ξ)δx4

6 0 45 −9 1 60δx − 1

140
y(7)(ξ)δx6

8 0 672 −168 32 −3 840δx +
1

630
y(9)(ξ)δx8

10 0 2100 −600 150 −25 2 2520δx − 1

2772
y(11)(ξ)δx10

operator:

w−2 + w−1 + w0 + w1 + w2 = 0 ,
−2 δx w−2 − δx w−1 + δx w1 + 2 δx w2 = 1 ,
4 δx2w−2 − δx2w−1 + δx2w1 + 4 δx2w2 = 0 ,

. . . . . .

(4.14)

i. e. 
1 1 1 1 1
−2 −1 0 1 2

(−2)2 (−1)2 0 12 22

(−2)3 (−1)3 0 13 23

(−2)4 (−1)4 0 14 24




w−2

w−1

w0

w1

w2

 =


0

1!/δx
0
0
0

 . (4.15)

The system for the coefficients w̃p of the second-derivative operator differs only
in the right-hand side:

1 1 1 1 1
−2 −1 0 1 2

(−2)2 (−1)2 0 12 22

(−2)3 (−1)3 0 13 23

(−2)4 (−1)4 0 14 24




w̃−2

w̃−1

w̃0

w̃1

w̃2

 =


0
0

2!/δx2

0
0

 . (4.16)

Tables 4.1 and 4.2 list the coefficients wp and w̃p for schemes of up to tenth order.
For convenience we write out explicitly the sixth-order formulas:

y′0 =
−y−3 + 9y−2 − 45y−1 + 45y1 − 9y2 + y3

60 δx
+ O

(
δx6

)
(4.17)

y′′0 =
2y−3 − 27y−2 + 270y−1 − 490y0 + 270y1 − 27y2 + 2y3

180 δx2
+ O

(
δx6

)
. (4.18)
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Table 4.2: Coefficients w̃k = pk/q = w̃−k and residual term R for finite difference approximations
of order n to the second derivative, y′′0 =

∑
k w̃kyk + R. The point ξ is in the interval x−n/2 < ξ <

xn/2.

n p0 p1 p2 p3 p4 p5 q R

2 −2 1 δx2 − 1

12
y(4)(ξ)δx2

4 −30 16 −1 12δx2 1

90
y(6)(ξ)δx4

6 −490 270 −27 2 180δx2 − 1

560
y(8)(ξ)δx6

8 −14350 8064 −1008 128 −9 5040δx2 1

3150
y(10)(ξ)δx8

10 −73766 42000 −6000 1000 −125 8 25200δx2 − 1

16632
y(12)(ξ)δx10

4.2.2 Spectral characteristics of finite-difference stencils

Important insight into the properties of a finite-difference scheme is obtained by
applying it to a harmonic function

y = eikx . (4.19)

Here 0 ≤ |k| ≤ π/δx, because the Nyquist wave number

kNy ≡
π

δx
(4.20)

is the highest wave number that can be distinguished on a grid of spacing δx.1

Applying the exact first and second derivative operators to the harmonic function
(4.19) would yield

∂xe
ikx = ikeikx , ∂2

xe
ikx = −k2eikx , (4.22)

thus the spectral transfer functions

H(1)(k) ≡ e−ikxD(1)eikx , (4.23)
H(2)(k) ≡ e−ikxD(2)eikx (4.24)

indicate the quality of the finite-difference approximations D(1), D(2): for exact
derivatives one would get 2

H(1)(k) = ik , H(2)(k) = −k2 . (4.25)
1According to

ei(kNy+k′)xl = (−1)leik′xl = ei(−kNy+k′)xl , (4.21)

the wave number kNy+k′ is equivalent to −kNy+k′.
2Such exact numerical derivative operators are indeed implemented by spectral schemes

which apply a Fourier transform, multiply in Fourier space by ik or −k2, and then transform
back.
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Figure 4.3: Spectral transfer functions H(kδx) ≡ e−ikDeik as a function of κ = kδx for centred
finite-difference schemes of different orders. Left: transfer function for the first derivative opera-
tor, D(1), multiplied by −i δx. Right: spectral transfer function for the second derivative operator,
D(2), multiplied by −δx2. The solid lines show the transfer function of the exact derivative oper-
ator (which is reproduced by spectral schemes).

Figure 4.3 shows the spectral transfer functions for a number of schemes from
order 2 up to 20. One can easily see how all schemes yield good approximations
to the exact derivative for small k, but for intermediate wave numbers (say, half
the Nyquist wavenumber κNy = kNyδx = π) only higher orders reproduce the
exact derivatives with sufficient accuracy.

As for stability, it turns out that the numerical solution of our simple advection
problem is getting even more unstable (instabilities grow faster) with higher-
order spatial derivative operators. So we have to try our next trick.

4.2.3 Higher-order time-stepping schemes

If we apply some of the higher-order time-stepping schemes from Chapter 1,
the situation changes drastically. The stability behaviour can be investigated by
Fourier-mode stability analysis which we will only outline here. Consider har-
monic modes of the form

y = ŷeγ∗teikx . (4.26)

We know that for the advection equation (4.5) — and for some other important
linear test problems — the energy in any Fourier mode remains the same, so
ideally γ∗ should just have an imaginary part; for the exact solution to Eq. (4.5),
it would be γ∗ = −iuk. The numerical scheme will still have solutions of the form
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(4.26), but now γ∗ will deviate from the exact result,

γ∗ = −iuk + γ + iω . (4.27)

The quantity γ is a growth rate and gives rise to the amplitude error, while ω
represents the phase error.

The question of stability boils down to the sign of γ. If γ > 0 for some modes,
then the energy in these modes will grow and eventually dominate the solution
and render it useless. Reducing the modulus of γ in this case will not remove the
instability — it only increases the time for which it can be be ignored.

If γ < 0, on the other hand, energy in the corresponding modes will decrease.
This implies that there is some numerical dissipation at work, but normally this
only affects the smaller scales. By decreasing the time step, both amplitude and
phase error will be decreased, so if γ ≤ 0 for all modes, one can control the errors
by adjusting the time step δt.

Table 4.3: Leading-order terms (in δt) of the growth rate γ and phase drift ω for time-stepping
schemes of different order m. The quantity 0 < Θ ≡ H(1)/(ik) < 1 is a measure of the quality of
the spatial scheme: Θ ≈ 1 where the scheme works good (typically for small k). Note that γ < 0
(indicating stability) only for m = 3, 4; 7, 8; 11, 12 . . ..

m γ ω

1
(ukΘ)2

2
δt uk(1−Θ) +

(ukΘ)3

3
δt2

2
(ukΘ)4

8
δt3 uk(1−Θ)− (ukΘ)3

6
δt2

3 −(ukΘ)4

24
δt3 uk(1−Θ)− (ukΘ)5

30
δt4

4 −(ukΘ)6

144
δt5 uk(1−Θ) +

(ukΘ)5

120
δt4

Table 4.3 shows the leading order in δt of the amplitude and phase errors for
time-stepping schemes of orders 1 to 4. Only the third- and fourth-order schemes
are stable (γ < 0), provided that the time step is sufficiently small (see § 4.4 be-
low). Although this result is formulated for the advection problem (4.5), exactly
the same stability conditions hold in the case of linear sound waves

∂t ln % = −∂xv (4.28)
∂tv = −c2

s∂x ln % (4.29)

if the advection speed u is replaced by the speed of sound cs. In the case of sound
waves in a medium that moves at speed u, the relevant velocity is max(|u±cs|).

To conclude, we can say that (for advection and similar problems) the amplitude
error, and thus the stability of the scheme, is determined by the time-stepping
scheme, while the phase error is normally dominated by the spatial discretisa-
tion.
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4.3 Artificial viscosity

A look at Table 4.3 shows that for Euler time stepping the growth rate γ =
(ukΘ)2δt/2 is proportional to k2 and thus corresponds to a negative numerical dif-
fusivity (often called numerical viscosity), because a positive diffusivity ν would
give rise to a negative growth rate γ = −νk2. From this we see that we can com-
pensate the growth of the modes by adding an additional viscous term to the
right-hand side of Eq. (4.5),

∂ty = −u ∂xy + ν∂2
xy . (4.30)

If we choose
ν =

1

2
u2 δt , (4.31)

the scheme becomes stable. A diffusivity ν added to stabilise a scheme is often
referred to as artificial viscosity. The scheme obtained by discretising Equ. (4.30)
is will be stable, provided the time step is small enough. Note that if δx → 0,
δt will also have to go to zero (see § 4.4 below); then, according to (4.31), the
artificial viscosity ν will tend to zero in this limit, too. This implies that the
solution we approach with ever finer meshes will be the solution of the original
equation (4.5) without any diffusion term.3

When solving partial differential equations that are more realistic than our sim-
ple advection problem, even third- and fourth order time-stepping schemes re-
quire some amount of diffusivity/viscosity due to boundary effects, nonlineari-
ties or just to minimise the consequences of the phase error. Like in the case
discussed above, this viscosity will always tend to zero for δx → 0. The recom-
mended minimum value of viscosity for the O (δt3, δx6) scheme is

ν = cν Umax δx (4.32)

where Umax is the largest velocity in the problem (including propagation speeds
of waves), and cν = 0.01 .. 0.02.

4.4 The length of the time step

Even the explicit schemes labelled as ‘stable’ are only stable if the time step δt
satisfies the Courant condition

δt ≤ cadv
δx

u
, (4.33)

where cadv is a dimensionless number of order unity.4 The ratio

C ≡ uδt

δx
(4.34)

3This property is referred to as consistency of a scheme. One popular example of a scheme
that can be inconsistent is the Dufort–Frankel scheme.

4This can be different for implicit schemes where one needs to solve a system of equations to
obtain y

(n+1)
l from y

(n)
l .
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is called the Courant number or CFL number (after Courant, Friedrichs and
Levy). For O (δt3, δx6) schemes, the stability boundary is cadv = 1.092. For
O (δt4, δx6) schemes, we have cadv = 1.783. In practise one should use a time step
considerably smaller than the stability limit (C = 0.5 or smaller), since at the
very limit the accuracy will always be poor.

If the equation to be solved contains (physical or artificial) diffusive terms, there
is another stability limit to the time step,

δt ≤ cdiff
δx2

ν
. (4.35)

In fact, this is simply another manifestation of condition (4.33) if we introduce
the velocity Udiff = ν/δx associated with diffusion. Reasonable values for the
coefficients cadv and cdiff can however be quite different.

Other propagation velocities (like the sound speed) will give rise to similar time
step restrictions. The recommended time step for the O (δt3, δx6) scheme is

δt = min
(
0.4 Umaxδx, 0.08 νmaxδx

2
)

, (4.36)

where Umax is the largest velocity in the problem and νmax the largest diffusivity.

Interpretation of the Courant criterion As a rule of thumb, the time step re-
strictions (4.33) and (4.35) can be interpreted as follows: explicit finite-difference
schemes are only stable if the time step is small enough for information to tra-
verse essentially only one grid cell per time step. However, this is not a strict
statement at all. One can easily see that it is the phase speed, rather than the
group speed of a given wave family that determines the stability of a scheme,
thus the issue is not really one of propagation of information.

Our standard scheme
This box summarises the properties of the scheme we normally use to
solve partial differential equations.

• 6th-order spatial derivative operators (4.17), (4.18);
• 3rd-order Runge–Kutta timestepping (see page 1.3);
• Artificial viscosity:

ν = cνUmaxδx

with cν = 0.01 . . . 0.02;
• Time step:

δt = min
(
0.4 Umaxδx, 0.08 νmaxδx

2
)

.



44

4.5 Boundary conditions

So far, our discussion was implicitly assuming that boundary conditions are pe-
riodic (or that the interval in x is unbounded). In real life, one often has to use
other boundary conditions. We will discuss this just briefly, restricting ourselves
to boundary conditions implemented by setting ghost zone values. A ghost zone
is a layer of fictitious points beyond the boundary which is introduced so that
wide finite-difference stencils can be applied even close to the boundary. For our
sixth-order (seven-point) stencil, we need three points on each side of the given
point, thus we will need three ghost layers on each side if we want to be able to
calculate derivatives in the very boundary points. This situation is depicted in
Fig. 4.4.

x

x1 x2 x3 xNx4
x
−3 x

−2 x
−1 x0

Figure 4.4: Sketch of ghost zones for a seven-point finite-difference stencil on a grid ranging from
x0 to xN .

When ghost zones are used, the boundary conditions provide a rule how to set
the values in the ghost points. We just present four popular choices of boundary
conditions that can be thus implemented:

1. Periodic boundary conditions

y−1 = yN−1 , y−2 = yN−2 , y−3 = yN−3 . (4.37)

2. Symmetry (y′0 = 0)

y−1 = y1 , y−2 = y2 , y−3 = y3 . (4.38)

3. Antisymmetry (y0 = 0)

y−1 = −y1 , y−2 = −y2 , y−3 = −y3 . (4.39)

4. Generalised antisymmetry (y′′0 = 0)

y−1 = 2y0 − y1 , y−2 = 2y0 − y2 , y−3 = 2y0 − y3 . (4.40)

Figure 4.5 illustrates these four boundary conditions
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Figure 4.5: The four boundary conditions discussed in the text, applied to an arbitrarily chosen
function. The shaded regions to the left and right are the ‘ghost zones’.
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Chapter 5

Stellar Winds and Critical Points

5.1 Fluid dynamics

Fluid dynamics or hydrodynamics is governed by conservation of mass, momen-
tum and possibly other quantities.

5.1.1 Mass conservation

Conservation of mass requires that the mass M =
∫

V % dV in a given (fixed)
volume V , changes according due to the mass flux Fm through the surface, Fm =∫

∂V jm· df , where % denotes (mass) density, jm = %v the mass flux density, and v
the velocity of the fluid (see Fig. 5.1 for an illustration). Thus, our mass balance
has the form

dM

dt
=

d

dt

∫
V

% dV = −
∫
∂V

%v· df . (5.1)

Pulling the time derivative into the integrand on the left-hand side and applying
Gauß’ integral theorem to the right-hand side, we can write∫

V

[
∂%

∂t
+ div(%v)

]
dV = 0 . (5.2)

This must hold for any fixed volume V ; thus if we contract V onto a given point
x, we obtain the continuity equation

∂%

∂t
+ div(%v) = 0 . (5.3)

5.1.2 Momentum conservation

The continuity equation (5.3) can also be written in index notation,

∂%

∂t
+

∂jk

∂xk

= 0 , (5.4)
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M

%v

Figure 5.1: Sketch of the mass balance in a volume V . The total mass M can only change in
agreement with the mass flux %v through the boundary.

with jk ≡ %vk denoting the mass flux density as above. In direct analogy, conser-
vation of momentum is expressed by a continuity equation of the form

∂%vi

∂t
+

∂Πik

∂xk

= 0 , (5.5)

where %vi is momentum density and Πik the momentum flux density, which is
a symmetric tensor describing the flux of i-momentum in the k-direction. The
tensor Πik consists of a transport component %vivk (reminiscent of the mass flux
density above) and the stress tensor σik. The latter can itself be split into the
isotropic pressure tensor pδik and the viscous stress −σ

(visc)
ik (the minus sign is

convention). Thus,
Πik = %vivk + pδik − σ

(visc)
ik , (5.6)

and Eq. (5.5) takes the form

∂(%vi)

∂t
+

∂

∂xk

[
%vivk + pδik − σ

(visc)
ik

]
= 0 . (5.7)

This can be expanded to

%∂tvi + vi∂t% + vi∂k(%vk) + %vk∂kvi + ∂ip− ∂kσ
(visc)
ik = 0 . (5.8)

The second and third term together are equal to vi [∂t%+div(%v)], which vanishes
because of the continuity equation (5.3), and thus after dividing by % we are left
with

∂tvi + vk∂kvi = −1

%
∂ip +

1

%
∂kσ

(visc)
ik . (5.9)

The viscous stress tensor σ
(visc)
ik must be symmetric. If it is assumed to be linear

in ∂iuk and traceless, it must have the form

σ
(visc)
ik = µ

(
∂ivk + ∂kvi −

2

3
div v δik

)
, (5.10)

where the coefficient µ is called dynamical viscosity. Assuming µ = const, we can
write

∂kσ
(visc)
ik = µ

(
∂i∂kvk + ∂2

kvi −
2

3
∂i∂lul

)
= µ

(
∆ vi +

1

3
∂i div v

)
; (5.11)
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thus, the equation of motion is

∂v

∂t
+ (v · grad)v = −1

%
grad p + ν

(
∆v +

1

3
grad div v

)
+ fext , (5.12)

where ν ≡ µ/% is the kinematic viscosity, and we have added the acceleration
fext due to external forces like gravity. Equation (5.12) is often referred to as
the Navier–Stokes equation. In the one-dimensional case, ∂y=∂z=0, v=(u, 0, 0),
it reduces to

∂tu + u∂xu = −1

%
∂xp +

4

3
ν ∂2

xu . (5.13)

5.1.3 The pressure term

If there is a unique relation between p and % — for example an adiabatic, poly-
tropic or isothermal equation of state — we can define the sound speed 1

c2
s ≡

dp

d%
. (5.16)

This allows us to rewrite the pressure term as follows

−1

%
grad p = −c2

s

%
grad % = −c2

s grad ln % . (5.17)

As ln % turns out to be a useful variable, we divide the continuity equation (5.3)
by % and express it in terms of ln %, too:

∂t%

%
+

v · grad % + % div v

%
= ∂t ln % + v · grad ln % + div v = 0 (5.18)

1 For a perfect gas in the adiabatic case (entropy s = const), the equation of state is

p = K%γ , (5.14)

where γ ≡ cp/cv is the adiabatic index, i. e. the ratio of specific heat at constant pressure, cp, to
the specific heat at constant volume, cv, and K is a constant related to the entropy s. For this
case we obtain the familiar relation

c2
s =

(
dp

d%

)
s

= γ
p

%
= γ

R
µmol

T (5.15)

where R/µmol is the specific gas constant, T the temperature, and (∂/∂)s denotes the partial
derivative for constant entropy s.

A polytropic equation of state looks like the adiabatic one (5.14), but with the adiabatic index
replaced by an exponent Γ that is treated as a free parameter.
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Thus, in terms of logarithmic density, our equations become

∂ ln %

∂t
+ v · grad ln % = − div v (5.19)

∂v

∂t
+ (v · grad)v = −c2

s grad ln % + ν

(
∆v +

1

3
grad div v

)
(5.20)

+ fext .

Sound waves
If we linearise equations (5.19), (5.20) using the ansatz

ln % = ln %0 + λ , (5.21)
v = 0 + u (5.22)

and assuming that λ� 1, |u| � cs, we obtain the system

∂λ

∂t
= −∂u

∂x
, (5.23)

∂u

∂t
= −c2

s

∂λ

∂x
. (5.24)

This system has the general solution

λ = f(x−cst) + g(x+cst) (5.25)
u = cs f(x−cst)− cs g(x+cst) (5.26)

where f(·), g(·) are arbitrary functions.

5.2 Parker wind

The solar wind is a continuous flow of ionised gas from the Sun; Fig. 5.2 shows
the angular dependency of its velocity as measured by Ulysses. Typical velocities
and particle densities at the position of the Earth are around 400 km/s (‘fast
solar wind’) and 104 m−3, i. e. 5 protons and 5 electrons per cm3. Following Parker
(1958), we now develop a simple hydrodynamical model for the acceleration of
such a wind.

To make the model as simple as possible, we assume the medium to be a per-
fect gas (a good approximation) and to be isothermal (a bad approximation, but
qualitatively still OK). The geometry is assumed to be spherically symmetric,
thus the only spatial coordinate is spherical radius r, and the velocity vector
has only a radial component, v = (vr, 0, 0). For this model, the continuity and
Navier–Stokes equations take the form

∂t% = − div(%v) = − 1

r2
∂r(r

2%vr) , (5.27)

∂tvr = −vr∂rvr − c2
s ∂r ln %− GM�

r2
. (5.28)
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Figure 5.2: Solar wind velocities as measured by the Ulysses spacecraft. The background image
is a combination of coronographic images showing that the Sun is surrounded by a medium that
scatters light (mostly the electrons of the solar wind and similar flows).

Now we assume a steady state, ∂t=0, and find that the continuity equation yields

∂r(r
2%vr) = 0 , (5.29)

i. e. the mass flux
Φm ≡ 4π%vrr

2 = const . (5.30)

We can derive a second invariant from the equation of motion (5.28), which can
be written as

−∂r

[
v2

r

2
+ c2

s ln %− GM�

r

]
= 0 . (5.31)

This implies that

E ≡ v2
r

2
+ c2

s ln %− GM�

r
= const . (5.32)

E is called the Bernoulli constant 2 and should not be interpreted as a specific
energy — it is only the energy flux density divided by %vr. This is different from
the specific energy, which is generally not constant.

2In the more general case of an adiabatic gas, the Bernoulli constant would be

E ≡ v2
r

2
+ h− GM�

r
, (5.33)
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The mass flux Φm allows us to eliminate % from the equation of motion (5.28):
with

ln % = ln
Φm

4π
− ln vr − 2 ln r (5.35)

we can write the pressure term as

−c2
s ∂r ln % = c2

s

(
∂r ln vr +

2c2
s

r

)
. (5.36)

Thus, (5.28) becomes

−vr∂rvr + c2
s∂r ln vr +

2c2
s

r
− GM�

r2
= 0 , (5.37)

or

(c2
s − v2

r)
∂rvr

vr

=
2c2

s

r2
(r∗ − r) , (5.38)

where

r∗ ≡
GM�

2c2
s

. (5.39)

Equation (5.38), which can also be written as

∂vr

∂r
=

2c2
s vr

r2

r∗ − r

c2
s − v2

r

, (5.40)

shows that the solution can turn from subsonic (vr<cs) to supersonic (vr>cs) only
where r∗=r. This solution which passes through the sonic point r=r∗, vr=cs is
sometimes referred to as sonic solution. Such points where the enumerator and
denominator of the right-hand side of a differential equation must simultane-
ously turn zero are called critical points of the equation.

Figure 5.3 shows all possible solutions of Parker’s problem normalised such that
the sonic point is at r∗=1, cs=1. If the solar wind starts as a subsonic outflow from
the solar surface, it can either pass through the sonic point and become super-
sonic (one of the solid lines in Fig. 5.3), or it can remain subsonic everywhere (the
lower set of dotted lines). In the latter case, the velocity will decrease for large r
(‘solar breeze’), and one finds that pressure and density would remain finite for
r → ∞, and in particular at the Earth’s orbit they would be much larger than
they are found to be. The only explanation reconciling observations and Parker’s
theory is that the solar wind indeed follows the sonic solution.

where

h =
∫

dp

%
=

c2
s

γ−1
(5.34)

is the specific enthalpy of the gas.
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Figure 5.3: Solutions of Parker’s problem (5.38) for cs = 1, GM� = 2. Shown are isocontours of
Ẽ := E − c2

s ln(Φm/4π), which is constant for any solution of (5.38). Solutions with Ẽ > − 3/2 are
dotted, those with Ẽ < − 3/2 dashed; both critical solutions are characterised by Ẽ = − 3/2. The
subsonic dotted solutions represent the ‘solar breeze’.

Boundary conditions
%|r0

arbitrary, fixed;

Determine u|r0
from Φm,0=Φm,1 or

d ln Φm

dr

∣∣∣∣
r0

=0.

Note that density does not enter Eq. (5.38) — the velocity profile is indepen-
dent from density. In fact, for the isothermal Parker wind model, if u(r), %(r) is
a solution, then u(r), α%(r) is a solution as well, where α is an arbitrary factor.
This would be different for other equations of state, e. g. a polytropic solar wind
model, where the sound speed depends on %. While such polytropic or isentropic
models lead to some qualitative changes (mostly because the critical point is no
longer fixed, which introduces an additional degree of freedom), the overall pic-
ture (flow starts subsonic, goes through critical point, ends highly supersonic)
remains the same.

A flow that shares many similarities with the Parker wind is that of gas through
a Laval nozzle (see Fig. 5.4 for an illustration), where subsonic gas enters the
nozzle, becomes sonic at the point with the smallest cross section (the critical
point of the corresponding differential equation) and leaves the nozzle at su-
personic speed. In the case of the solar wind, the “nozzle” is provided by the
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v = cs
v > csv < cs

Figure 5.4: Flow through a Laval nozzle (schematic). Subsonic gas from the combustion chamber
becomes sonic (v = cs) at the narrowest part of the nozzle and eventually leaves at supersonic
speed.

combination of gravity and spherical divergence of streamlines.

Boundary conditions
In a simplified model of the solar wind, one can choose the following boundary
conditions at the inner radial boundary r = r0 (the solar surface):

%
∣∣
r0

= %0 , ∂rΦm

∣∣
r0

= 0 , (5.41)

where %0 is given. Written as a condition for u (assuming % to be known), the
second condition reads

∂rvr = −vr

(
∂r% +

2

r

)
. (5.42)

[Boundary conditions: %|r0 arbitrary, fixed; determine u|r0 from ∂rΦm|r0 = 0. ]



Chapter 6

Linear and Nonlinear Alfvén Waves

6.1 Basics of magnetohydrodynamics

6.1.1 The induction equation

Magnetohydrodynamics or MHD is the discipline describing the dynamics of
electrically conducting fluids. For such fluids one normally finds that in Ampère’s
law

curlB = µ0

(
j +

∂D

∂t

)
(6.1)

the displacement current
∂D

∂t
=

1

µ0c2

∂E

∂t

can be neglected. This excludes electromagnetic waves and is equivalent to tak-
ing the limit c→∞. Ampère’s law then reduces to

µ0j = curlB . (6.2)

For the permeability we shall take the vacuum value, µ0 = 4π × 10−7 Vs/Am.

Assuming that in the local rest frame the familiar linear relation j = σE between
electric current density j and electric field strength E holds – σ denoting the
electrical conductivity of the medium – and using the Galilei transformation
properties of E, B and j, one arrives at Ohm’s law

j = σ(E + v ×B) . (6.3)

Thus, like the current the electric field can be expressed in terms of B:

E = −v ×B + η curlB , (6.4)

where
η ≡ 1

µ0σ
(6.5)

is the magnetic diffusivity of the medium. Good conductors will have low values
of η, while insulators are described by the limit η →∞.
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Given that all electromagnetic variables can be explicitly expressed through the
magnetic field alone, Faraday’s law ∂B/∂t = − curlE takes the form

∂B

∂t
= curl (v ×B− η curlB) . (6.6)

This equation is referred to as induction equation; together with the standard
equations of fluid dynamics, it forms the starting point of magnetohydrodynam-
ics.

The term curl(v × B) on the right of (6.6) describes the inducing effect of the
motion upon the magnetic field; the term − curl(η curlB) manifests the “ohmic”
decay of the field due to the finite electrical resistance. By order of magnitude
we compare the two terms by replacing the diverse vectors by their absolute
magnitudes, B and v, and the curl operator by 1/l, where l is the scale of the
field variation in space. We obtain

Rm = vl/η (6.7)

as the ratio of the induction term over the decay term; Rm is called the magnetic
Reynolds number. This number can also be understood as a ratio of two time
scales, namely the time scale of ohmic decay, l2/η, and the advection time scale,
l/v. When we speak of “high conductivity” we mean Rm � 1, or that the time
scale of ohmic decay is much longer than l/v.

The magnetic field is always solenoidal,

div B = 0 . (6.8)

However, this is not an independent condition: from the induction equation (6.6)
it follows that B will remain solenoidal if it is solenoidal at an initial time.

6.1.2 The equations of magnetohydrodynamics

The equations governing the evolution of the magnetic field are supplemented
by the equations of fluid dynamics, which have been used already in Sect. 5.1.
The continuity equation,

∂%

∂t
= − div(%v) , (6.9)

describes the conservation of matter, and the equation of motion,

%
dv

dt
= −grad p + ν%

(
∆v +

1

3
grad div v

)
+ %g + j×B , (6.10)

expresses the conservation of momentum. Equation (5.12) has been multiplied
by %; the external accelerations fext represent the gravitational force and the
electromagnetic force. The latter – the last term on the right of (6.10) – is the
Lorentz force. This force (more precisely, force density) describes the action of



6.1. Basics of magnetohydrodynamics 57

the magnetic field upon the flow v. The Lorentz force can be written in diverse
vectorial forms,

j×B =
1

µ0

curlB×B = − grad
B2

2µ0

+ (B · grad)
B

µ0

, (6.11)

or in form of the divergence of the Maxwell stress tensor sik,

− ∂

∂xk

sik , sik =
1

µ0

(
1

2
δikB

2 −BiBk

)
. (6.12)

The two terms of the Maxwell stress tensor represent the magnetic pressure,
B2/2µ0, and the magnetic tension, respectively. The divergence term is a sum
over k.

In addition to equations (6.6), (6.9), and (6.10), an energy equation is generally
required. However, in the present chapter we shall treat only cases where this
equation does not matter, or where it can be represented in a simple way, e.g.,
in the case of adiabatic changes of state. In that case a fluid parcel does not ex-
change energy with its environment, so that its pressure and density variations
are related through

1

p

dp

dt
=

γ

%

d%

dt
, (6.13)

where γ = cp/cV . We shall take γ = const. and assume that the fluid is an ideal
gas. Then

p

%
=
RT

µ
, (6.14)

where µ is the mean molecular weight, andR the gas constant. The sound speed
is defined by

c2
s :=

(
∂p

∂%

)
S

=
γRT

µ
=

γp

%
. (6.15)

Expanding the total derivatives in Eq. (6.13) we therefore obtain

∂p

∂t
+ v · grad p = c2

s

(
∂%

∂t
+ v · grad %

)
. (6.16)

6.1.3 Frozen-in magnetic field

In astrophysics we often deal with ionized, and therefore electrically conducting,
matter. Since in most cases the scales are very large, the magnetic Reynolds
number Rm is large, even when the conductivity is moderate in comparison to
the conductors in a terrestrial laboratory. In the limit of large Rm the concept of
a frozen magnetic field is useful.

The meaning of a frozen field is that the magnetic flux is transported along with
the material motion. To see this take the total flux

Φ =

∫
F

B · df (6.17)
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Figure 6.1: Motion of a closed curve S with a flow v.

across an area F , and consider the circumference S of F at two instants sepa-
rated by an infinitesimal interval dt of time (Fig. 6.1). At the later instant the
circumference is made up by the same material “particles” (in the sense of fluid
mechanics) but it may be deformed or stretched according to the various paths
vdt followed by these particles. The magnetic flux Φ′ across the new area F ′ may
differ from Φ either because the field B itself has undergone a change in time, or
because some of the flux has left the volume between F and F ′ through the side
walls. The (outwards directed) area element of the side wall is −vdt× ds; hence

Φ′ − Φ = dt

[∫
F

Ḃ · df +

∫
S

B · (v × ds)

]
, (6.18)

where the second integral is taken along the closed curve S. Now we use B · (v×
ds) = (B×v) ·ds, apply Stokes’ theorem to convert the line integral along S into
an integral over F , take the limit dt→ 0, and obtain

dΦ

dt
=

∫
F

[
Ḃ− curl(v ×B)

]
· df . (6.19)

By (6.6), the right-hand side is zero for σ → ∞. Hence, in the limit of infinite
conductivity, the magnetic flux enclosed by the curve S is conserved. Since the
choice of S is arbitrary, and since the constant flux can be represented by a
certain number of field lines, we may say that the field lines behave as if they
were firmly attached, or “frozen”, to the moving fluid.

6.2 Alfvén waves

In a magnetised, electrically conducting fluid, three types of waves can prop-
agate, slow and fast magneto-sonic waves – which involve compression of the
fluid and are related to sound waves –, and Alfvén waves. The latter propagate
along the magnetic field lines; the restoring force causing them is the tension of
the magnetic field and can be expressed in terms of the Maxwell stress tensor
sik.

In this section we shall first discuss the Alfvén waves in a case where even a
nonlinear treatment is possible. Then we shall turn to the general case where all
three wave types occur; but this will be done only for waves of small amplitude,
so that the wave equations can be linearized.
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6.2.1 Nonlinear Alfvén waves – no dissipation

This sub-section essentially follows the text of P. H. Roberts, An Introduction to
Magnetohydrodynamics (Longmans 1967). We concentrate on the Alfvén waves,
and neglect the possibility of sound waves. Therefore we neglect the compress-
ibility, and set % = const.. The equation of continuity is, then,

div v = 0 . (6.20)

We consider a reference state at rest, v = 0, with a homogeneous magnetic field
B0 = const., and write B = B0 + b for the total field strength. The term b is the
variable part of the magnetic field and is associated with the variable flow field
v. In the equation of motion, (6.10), we neglect the forces due to viscosity and
gravity, expand the derivative dv/dt, substitute B, and use (6.11):

∂v

∂t
+ v · gradv = −1

%
grad

(
p +

B2

2µ0

)
+

1

µ0%
B0 · gradb +

1

µ0%
b · gradb . (6.21)

In the induction equation, (6.6), we neglect the η term (which corresponds to the
limit Rm � 1), expand the term curl(v ×B), and also substitute B:

∂b

∂t
+ v · gradb = B0 · gradv + b · gradv . (6.22)

Now suppose there is a solution satisfying p+B2/2µ0 = const. (this condition can
be used to determine the pressure p from B2, once a solution for the magnetic
field has been found). In such a case both equations (6.21) and (6.22) can be
satisfied by

v = ± b
√

µ0%
, (6.23)

because they both reduce to
∂b

∂t
= ± B0√

µ0%
· gradb . (6.24)

We choose a Cartesian coordinate system such that B0 is in the x-direction, and
define the Alfvén velocity:

vA =
B0√
µ0%

. (6.25)

Then, (6.24) becomes
∂b

∂t
= ±vA

∂b

∂x
(6.26)

and has solutions of the form

b = B0f(x± vAt, y, z) . (6.27)

The factor B0 has been added to make f a dimensionless function, which oth-
erwise is quite arbitrary except that, because b is solenoidal, it must satisfy
div f = 0. From (6.23) it follows that

v = ±vAf(x± vAt, y, z) . (6.28)
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Remark 1: Alfvén-wave energy
The solution (6.27) and (6.28) propagates either in the negative x-direction (up-
per sign) or in the positive x-direction (lower sign). These solutions are called
Alfvén waves (Hannes Alfvén, Nobel price in physics 1975). Notice that the two
solutions cannot be superposed into a linear combination. Such a superposition
would not solve the (nonlinear!) equations (6.21) and (6.22).

Let us consider the solution that propagates in the positive x-direction. And let
us consider the special simple case where b and v are independent of y and z.
From div f = 0 we then find ∂fx/∂x = 0. Hence fx must be constant; we set fx = 0
as a non-zero value could be added to the equilibrium field B0. Thus bx = vx = 0,
i. e., the propagating pattern is transverse.

The energy density (magnetic plus kinetic) is
1

2µ0

(B0 + b)2 +
1

2
%v2 =

1

2µ0

(B2
0 + b2) +

1

2
%v2 , (6.29)

and the part associated with the Alfvén wave is

ewave =
1

2µ0

b2 +
1

2
%v2 = %v2

Af 2 . (6.30)

The energy flux associated with the Alfvén wave can be obtained from the Poynt-
ing vector. Since, by (6.4), the electric field is E = −v×B = vAf×B0, the Poynting
vector is

P =
1

µ0

E×B =
vA

µ0

(f ×B0)× (B0 + b) . (6.31)

Expanding the double vector product and taking into account that b is trans-
verse, we find

P = %v2
Av + vAewaveex . (6.32)

For a periodic oscillation v the first term makes no contribution to the average
over a period. On the other hand, the second term represents a net transport
in the positive x-direction. This is called Alfvén radiation. This kind of energy
transport probably plays an essential part in the heating of the solar corona,
where energy must be transmitted from a cool (the solar surface, approx. 5800 K)
to a hot place (the corona, over 106 K), which usually does not happen in thermo-
dynamics.

Remark 2: The string analogy
Let y be the direction of oscillation, i.e., v = (0, vy(x), 0) and b = (0, by(x), 0). The
y-component of (6.21) then reads

%
∂vy

∂t
=

1

µ0

B0
∂by

∂x
. (6.33)

The force on the right can be written as
1

µ0

∂B0by

∂x
=

1

µ0

∂BxBy

∂x
= −∂sxy

∂x
, (6.34)
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cf. Eq. (6.12). On the other hand, the restoring force of an oscillating string is
given by ∂(T sin α)/∂x, where T sin α is the transverse component of the string
tension (the string has an angle α(x, t) to the x-direction). This analogy justifies
the name “magnetic tension” of the component sxy of the Maxwell stress tensor.

The time derivative of (6.24) is

∂2by

∂t2
= ± B0√

µ0%

∂

∂x

∂by

∂t
=

B2
0

µ0%

∂2by

∂x2
= v2

A

∂2by

∂x2
. (6.35)

Hence vA is the propagation speed of the transverse field oscillation, correspond-
ing to (T/%)1/2 for the oscillating string.

6.2.2 Alfvén waves with dissipation

In this section we retain the assumption of incompressibility and transverse
wave motion, but we admit dissipation, that is, we admit the η and ν terms in
Eqs. (6.6) and (6.10), respectively. With the same choice of coordinates as in the
preceding section, we find for vy(x, t) and by(x, t) the evolution equations

%
∂vy

∂t
=

B0

µ0

∂by

∂x
+ ν%

∂2vy

∂x2
, (6.36)

∂by

∂t
= B0

∂vy

∂x
+ η

∂2by

∂x2
. (6.37)

Roberts (l.c.) considers a wave excited by a harmonic oscillation exp(iωt) at the
boundary x = 0 and inquires how far in space x the damped oscillation reaches.
He finds LD = λ2vA/[2π2(ν + η)] for the length of amplitude decay (to 1/e of the
value at x = 0), where λ = 2πvA/ω is the wave length of the propagating Alfvén
wave. Here we proceed in a different, but equivalent, way. We consider perturba-
tions vy, by ∝ exp[i(kx− ωt)], where k is a given real wave number, while ω must
be found (and will be complex in general). Substitution into (6.36) and (6.37)
yields two homogeneous equations for the amplitudes of vy and by. For a non-
trivial solution the determinant of this system of equations must vanish. This
yields an equation for ω, namely

ω2 + iωk2(ν + η)− νηk4 − v2
Ak2 = 0 . (6.38)

The roots of this equation are

ω± =
1

2

(
−ik2(ν + η)±

√
4v2

Ak2 − k4(ν − η)2

)
. (6.39)

Now we consider the case of weak damping, with ν, η � vA/k. Then

ω± = ±kvA − ik2ν + η

2
, (6.40)



62

and the perturbation is a damped Alfvén wave, with the (1/e)-time

TD = − 1

=(ω)
=

2

k2(ν + η)
=

λ2

2π2(ν + η)
, (6.41)

where λ = 2π/k. Within the time TD the wave propagates a distance vATD, i.e.,
the damping length is

LD =
vAλ2

2π2(ν + η)
. (6.42)

6.2.3 Linear Alfvén waves and magneto-sonic waves

Now we retain compressibility, and allow for wave propagation in an arbitrary
direction (relative to the direction of B0). But we shall discard the dissipation
terms (the ν and η terms). And we shall consider only waves of small amplitude,
relative to the reference state at rest, v = 0:

B = B0 + b , % = %0 + %1 , p = p0 + p1 . (6.43)

We consider an isothermal situation, for the reference state as well as for the
perturbation, and therefore have p1 = c2

s%1. Since B0 is homogeneous, the associ-
ated current density is zero, and

j = j1 =
1

µ0

curlb . (6.44)

Substituting all variables in Eqs. (6.6), (6.9), and (6.10), and retaining only the
terms of first order in v, b, etc., we find

∂%1

∂t
= −%0 div v , (6.45)

%0
∂v

∂t
= −c2

sgrad %1 +
1

µ0

curlb×B0 , (6.46)

∂b

∂t
= curl (v ×B0) . (6.47)

Since all coefficients in these linear equations are constants, we seek solutions
∝ exp[i(k · x− ωt)]. Hence we may substitute

∂

∂t
= −iω , grad = ik , div = ik· , curl = ik× (6.48)

and obtain

− iω%1 = −%0ik · v, , (6.49)

−%0iωv = −c2
s ik%1 +

1

µ0

i(k× b)×B0 , (6.50)

−iωb = ik× (v ×B0) . (6.51)
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We eliminate %1 with the first, and b with the third of these equations. The
second, multiplied by iω/%0, then yields

ω2v = c2
sk (k · v) +

1

%0µ0

B0 × {k× [k× (B0 × v)]}

= c2
sk (k · v) +

1

%0µ0

{k [B2
0 (k · v)− (v ·B0)(k ·B0)] (6.52)

−(k ·B0) [B0 (k · v)− v (k ·B0)]} .

We take the scalar product of this equation with the vectors k and B0 (i.e., the
projection of the equation in these two directions),

ω2 (k · v) = c2
sk

2 (k · v) +
1

%0µ0

{k2[B2
0 (k · v)− (v ·B0)(k ·B0)]} , (6.53)

ω2 (B0 · v) = c2
s (k ·B0)(k · v) . (6.54)

These are two homogeneous linear equations for the two unknowns k · v and
B0 ·v; their determinant must be zero. This yields the dispersion relation for the
magneto-sonic waves:

ω4 − ω2 (c2
s + v2

A)k2 +
c2
sk

2

%0µ0

(k ·B0)
2 = 0. (6.55)

Let θ be the angle between the direction k of wave propagation and B0. Then
(k ·B0)

2/(%0µ0) = k2v2
A cos2 θ, and the dispersion relation becomes

ω4

k4
− (c2

s + v2
A)

ω2

k2
+ c2

sv
2
A cos2 θ = 0 . (6.56)

The solution is

ω2

k2
=

c2
s + v2

A ±
√

(c2
s + v2

A)2 − 4c2
sv

2
A cos2 θ

2
, (6.57)

and the phase velocity, ω/k, is the square root of this.

The upper sign in (6.57) yields the fast magneto-sonic wave; its phase velocity is
largest, namely ω2/k2 = c2

s + v2
A, for θ = 90◦, i.e., for a wave propagating perpen-

dicular to the reference field B0; it is slowest, ω2/k2 = max(c2
s , v

2
A), for θ = 0.

The lower sign in (6.57) yields the slow magneto-sonic wave; its phase velocity is
smallest for θ = 90◦, namely ω/k = 0; it reaches its largest value for θ = 0, where
ω2/k2 = min(c2

s , v
2
A).

Figure 6.2 is a polar diagram that shows the phase velocities of the two magneto-
sonic waves, as functions of the angle θ, for the cases v2

A > c2
s and v2

A < c2
s .

Above we have projected Eq. (6.52) onto the two directions k and B0. A third
independent direction is k×B0. Projection of (6.52) to this direction yields

ω2 (k×B0) · v =
1

%0µ0

(k ·B0)
2 (k×B0) · v (6.58)
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Figure 6.2: Polar diagram for the dispersion of magneto-sonic waves (solid) and Alfvén waves
(dashed). The field B0 points toward the right. The distance from the origin is the phase velocity,
ω/k, as a function of the angle θ between the field and the direction of wave propagation. Left:
vA = 0.8, cs = 0.5. Right: vA = 0.5, cs = 0.6.

or
ω2

k2
= v2

A cos2 θ . (6.59)

This is the dispersion relation for an Alfvén wave that propagates in an inclined
direction relative to the reference field B0; for θ = 0 it includes the special case
treated earlier. Relation (6.59) is also illustrated in Fig. 6.2.

In this section we have found two independent wave types: On the one hand,
the fast and slow magneto-sonic waves, with velocity components in the plane
defined by the vectors k and B0; on the other hand, the inclined Alfvén wave,
with a velocity component perpendicular to both k and B0. Although the latter
does not, in general, propagate along the field B0, it is a strictly transverse wave.



Chapter 7

Wave Breaking and Shocks

7.1 Sound waves in a stratified atmosphere

In this section we shall demonstrate that in a stratified atmosphere acoustic
waves have an amplitude that increases with height. Hence the formation of
shocks is inevitable. Such shocks will be discussed in Sect. 7.2.

Stratification is a consequence of gravity. Therefore we retain the term %g =
−%gez in Eq. (6.10). On the other hand, we neglect the effects of viscosity and
of the magnetic field, and consider only waves of small amplitude, and adiabatic
changes of state, as expressed by Eq. (6.16).

We consider an isothermal equilibrium state at rest, v = 0. In this state the
pressure and the density have barometric stratifications,

p0(z) = p00e
−z/H , %(z) = %00e

−z/H , (7.1)

where the scale height

H =
RT

µg
=

c2
s

γg
(7.2)

is a constant. Small deviations v, p1, %1 from the equilibrium state obey the lin-
earized forms of Eqs. (6.9), (6.10), and (6.16):

∂%1

∂t
= −%0 div v − v · grad %0 , (7.3)

%0
∂v

∂t
= − grad p1 − %1gez , (7.4)

∂p1

∂t
+ vz

dp0

dz
= c2

s

(
∂%1

∂t
+ vz

d%0

dz

)
. (7.5)

These equations are linear and homogeneous, but this time the coefficients are
not constants: %0 and p0 depend on z. A close inspection, however, shows that
the z-dependence has always the form exp(−z/H), and that it occurs always in
combination with the velocity. Therefore the ansatz

(p1, %1) = (p10, %10) e−z/2H exp[i(k · x− ωt)] , (7.6)
v = v0 ez/2H exp[i(k · x− ωt)] (7.7)

65



66

yields a factor exp(−z/2H) in all terms of the three equations; hence this factor
can be dropped, as well as the factor exp[i(k · x− ωt)]. Substitution of the ansatz
leads to a linear homogeneous algebraic system of equations for the amplitudes
p10, %10, and v0, viz.

− iω%10 = −%00

(
ik +

ez

2H

)
· v0 + vz0

%00

H
, (7.8)

−iω%00v0 = −
(
ik− ez

2H

)
p10 − %10gez , (7.9)

−iωp10 − vz0
p00

H
= c2

s

(
−iω%10 − vz0

%00

H

)
. (7.10)

It is sufficiently general to treat the two-dimensional case where v0 = (vx0, 0, vz0)
and k = (kx, 0, kz). Thus we have four homogeneous linear equations for the
four unknowns %10, vx0, vz0, and p10; the determinant of these four equations
must vanish. We omit the calculation; the result is a fourth-order equation for
the frequency ω, the dispersion relation for waves in an isothermally stratified
atmosphere:

ω4 − c2
s

(
k2

x + k2
z +

1

4H2

)
ω2 + k2

xc
2
s

g

H

γ − 1

γ
= 0 . (7.11)

Alternatively, we may consider ω as given and solve for the vertical component,
kz, of the wave vector. Introducing the acoustic cutoff frequency

ωA =
cs

2H
, (7.12)

and the Brunt–Väisälä frequency N through

N2 =
g

H

γ − 1

γ
, (7.13)

we obtain
k2

z =
ω2 − ω2

A

c2
s

+ k2
x

N2 − ω2

ω2
. (7.14)
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Three topics must be mentioned here:

• The dispersion relation is of second order in ω2. Hence it essentially de-
scribes two wave types. One is an acoustic wave, modified by the effect
of stratification. The other is an internal gravity wave, related to gravity
waves in water, and essentially supported by the restoring force of grav-
ity. The internal gravity wave exists only in the case of non-zero horizontal
wave number, kx 6= 0.

• The modified acoustic wave is easiest discussed in the special case kx = 0,
where

k2
z =

ω2 − ω2
A

c2
s

. (7.15)

This means that a vertically propagating acoustic wave (i.e., one with real
vertical wave number kz) is possible only if ω2 > ω2

A. Otherwise the vertical
dependence of the amplitude is exponential. In the solar atmosphere, we
have cs ≈ 7 km/s and H ≈ 100 km; hence ωA = cs/2H ≈ 0.035 s−1, which
corresponds to a period of about 3 min. Indeed, it appears that only waves
with periods shorter than this propagate in the solar atmosphere (Fig. 7.1).

Figure 7.1: The phase difference, ∆φ, of oscillations measured in two lines originating deep and
high, respectively, in the solar atmosphere, as a function of frequency. A significant phase differ-
ence, indicating running waves, occurs only for frequencies ν = ω/2π > 5 mHz. After J. Staiger,
Astron. Astrophys. 175 (1987), p. 263.

• Wave amplitudes increase exponentially with height, proportionally to
exp(z/2H). A typical value for a wave amplitude at the base of the solar at-
mosphere (the photosphere) is 1 km/s, as observed by means of the Doppler
effect of spectral lines. With the numbers given before, the sound speed will
be exceeded already after 4 scale heights. Then the nonlinear terms that
were dropped in the present section become important, and shock fronts
will form.
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Shocks also occur in other astrophysical contexts. An important example is the
solar wind which was treated in Sect. 5.2. The solution derived by Parker is
super-sonic after passing the critical point. Thus, whenever this super-sonic
wind meets an obstacle like a planet or a comet, there must be a transition to
a sub-sonic regime, which will have the form of a shock front. In addition, the
solar wind finally must merge into the interstellar gas, which should happen
after passing a shock front. According to calculations this termination shock of
the solar wind occurs at a distance of order 85 astronomical units from the Sun,
more than twice the distance of Pluto, the outermost planet. Two spacecrafts,
Voyager 1 and Voyager 2 , launched over 20 years ago and still able to transmit
signals, will reach that distance in 2004 and 2010, respectively.

7.2 The shock-tube problem

7.2.1 The experiment

The shock-tube experiment is performed in a tube filled with gas that is initially
at rest. A membrane separates two parts of the tube (Fig. 7.2). The pressure and
the density on the left and right of the membrane are pl, %l and pr, %r, respectively.

Figure 7.2: The shock-tube, with the membrane at x = 0.

To start the experiment, the pressure at the left is increased until the membrane
breaks. At this moment a flow towards the right sets in. If the original pressure
difference across the membrane is sufficiently large, one observes a forward-
moving shock front , where the velocity as well as the thermodynamic variables
are discontinuous (at x ≈ 1.25 in Fig. 7.4 below). Energy is dissipated in such
a shock, which results in heating of the gas. The shock front is followed by an
– also forward-moving – contact discontinuity (at x ≈ 0.3 in Fig. 7.4), where
the pressure and the velocity are continuous, while the other thermodynamic
variables have jumps. Finally, there is a – backward-moving – zone of expansion,
also called rarefaction wave (−1.1 < x < −0.6), with an approximately linear
transition to the original high-pressure state at the left side. Figure 7.3 shows
the positions of the diverse transitions in the shock-tube experiment as functions
of time.

7.2.2 Numerical model

We describe the shock-tube experiment in a one-dimensional model. The coordi-
nate x is along the tube, and the membrane that separates the initial high- and
low-pressure regimes is placed at x = 0.
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Figure 7.3: The change of position of the diverse transitions in the shock-tube experiment. Exp.
zone = expansion zone; cont. dis. = contact discontinuity.

The three equations to be used are the equation of continuity, the equation of
motion, and the equation of energy conservation. The variables for which we
write down these differential equations are ln %, the velocity v, and the specific
entropy s. Other thermodynamic variables occur as well, but merely as auxiliary
quantities.

The continuity equation is, cf. (5.19),

∂ ln %

∂t
= −v

∂ ln %

∂x
− ∂v

∂x
. (7.16)

For the equation of motion we take the form (6.10), but we neglect the terms
arising from gravity and the magnetic field. On the other hand, we must recall
that in the case of a variable viscosity the coefficient ν% appears under the di-
vergence of the stress tensor, cf. Eqs. (5.7) and (5.10). In our 1D-model, then, we
have

∂v

∂t
= −v

∂v

∂x
− 1

%

∂p

∂x
+

1

%

∂

∂x

(
ν%

4

3

∂v

∂x

)
. (7.17)

In order to eliminate the pressure from this equation, we start from the defini-
tion of the specific entropy (per mass), s(ε, V ), as a function of the specific internal
energy ε and the specific volume V = 1/%. Since, for a perfect gas, ε = cvT , we
have

ds =
1

T
dε +

p

T
dV =

cv

T
dT − p

T%2
d% . (7.18)

Using p = %RT/µ = %T (cp−cv) and dT/T = dp/p − d%/% we find the desired
relation between entropy, pressure, and density:

ds = cv(d ln p− γd ln %) , (7.19)

where γ = cp/cv, or, in integrated form,

s = s0 + cv ln

[
p

p0

(
%

%0

)−γ
]

, p = p0

(
%

%0

)γ

exp[(s−s0)/cv] , (7.20)
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Figure 7.4: The variables of the shock-tube experiment. From the numerical model of Sect. 7.2.2.

where the subscript 0 denotes a reference state. For the sound velocity we thus
obtain

c2
s ≡

pγ

%
= c2

s 0

(
%

%0

)γ−1

exp[(s−s0)/cv] . (7.21)

Hence the equation of motion to be used in the numerical model can be written
in the form

∂v

∂t
= −v

∂v

∂x
− c2

s

∂

∂x

(
ln % +

s

cp

)
+

4ν

3

[
∂2v

∂x2
+

∂

∂x

(
ln(ν%)

∂v

∂x

)]
. (7.22)

Next we turn to the energy equation.

We begin with the 1st law of thermodynamics, %Tds = δQ, where δQ is the en-
ergy gain (per volume, because a factor % was added on the left). In the shock-
tube model, we consider two contributions to δQ, namely heat conduction and
dissipation due to viscosity. The flow of conducted heat is down the tempera-
ture gradient, −λ∂/T∂x, and its negative divergence is −∂/∂x of this. The heat
added by dissipation is %νS2/2, where S is the stress tensor, defined through
Sik = (∂ivk + ∂kvi) − (2/3)δik div v; up to the factor %ν, this is the tensor σik intro-
duced in Sect. 5.1. In the one-dimensional model the dissipation term simplifies,
so that

%T
ds

dt
=

∂

∂x

(
λ

∂T

∂x

)
+

4

3
%ν

(
∂v

∂x

)2

. (7.23)
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In order to rewrite the heat-conduction term we replace the heat conductivity λ
by the thermal diffusion coefficient

χ =
λ

%cp

. (7.24)

The energy equation, divided by %T , thus takes the form

∂s

∂t
= −v

∂s

∂x
+ cpχ

[
∂2 ln T

∂x2
+

∂ ln T

∂x

∂ ln(T%χ)

∂x

]
+

4ν

3T

(
∂v

∂x

)2

, (7.25)

where d/dt = ∂/∂t + v∂/∂x has been used.

Equations (7.16), (7.22), and (7.25) are used in the exercises, part 8, of this
course.

7.2.3 Rankine–Hugoniot relations

In this section we consider the diverse discontinuities at the shock front, and
derive relations between the physical quantities at the two sides of the shock.
We do this for the idealized case without dissipation, where ν = χ = 0, which is
also called the Riemann problem. The position of the shock front is at x4(t), see
Fig. 7.3.

We integrate the equation of continuity,

∂%

∂t
+

∂(%v)

∂x
= 0 , (7.26)

over a short interval that includes x4 as an inner point, and then go to the limit
where the length of that interval becomes zero. Since ∂%/∂t is bounded, the con-
tribution from this term vanishes in the limit. Since the remaining term is an
x-derivative, we can integrate and obtain

[[%v]] = 0 , (7.27)

where [[ ]] denotes the difference of the enclosed expression on the two sides of
the discontinuity (right − left). It is important to realize that x4(t) is moving;
hence the velocity that appears in (7.27) is relative to the (moving) shock front.
Condition (7.27) expresses that as much matter as enters the front on one side
will leave the front at the other side.

In the equation of motion we set ν = 0. If we add v times the equation of conti-
nuity, we obtain

∂%v

∂t
= −∂%v2

∂x
− ∂p

∂x
. (7.28)

From this equation we find, by the same reasoning as before,

[[p + %v2]] = 0 . (7.29)
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Again the velocity that appears in this relation is relative to the moving shock
front.

A third relation is obtained from the energy equation,

∂

∂t

(
%ε +

1

2
%v2

)
= − ∂

∂x

[
v

(
%ε + p +

1

2
%v2

)]
. (7.30)

This is a familiar form of the energy equation: On the left we have the change
of the density of internal plus kinetic energy; on the right there is the negative
divergence of the flow of these two forms of energy, plus the work that must be
done due to the presence of a pressure gradient and because the gas is compress-
ible (notice that h = ε + p/% is the specific enthalpy).

Equation (7.30) is treated in an analogous manner as the equation of continuity
and the equation of motion. This leads to the third of the Rankine–Hugoniot
relations, [[

ε +
p

%
+

1

2
v2

]]
= 0 , (7.31)

where relation (7.27) has been used

The Rankine–Hugoniot relations are three equations for 6 quantities, namely v,
p, and % on either side of the shock. The specific internal energy ε is assumed to
be a known function of p and %. In the case of a perfect gas with constant specific
heats we have ε = p/(γ−1)%.

From the first two Rankine–Hugoniot relations, (7.27) and (7.29), we eliminate
the velocities:

v2
4 = V 2

4

p4 − pr

Vr − V4

, v2
r = V 2

r

p4 − pr

Vr − V4

, (7.32)

where the subscripts (4, r) denote the values on the left and right of the front,
respectively, and where Vi = 1/%i. Substitution into (7.31) yields a relation for
the thermodynamic variables alone,

εr − ε4 =
1

2
(p4 + pr)(V4 − Vr) , (7.33)

which is known as a Hugoniot curve.

7.2.4 Analytical reference solution

One may use the Rankine–Hugoniot relations to derive an analytical solution for
the Riemann problem, piecewise for the diverse regimes separated by the xi(t)
shown in Fig. 7.3. We do this1 for the variables v, p, and %, where the velocity
v will now always be that in the rest frame; the specific entropy may then be
evaluated by the first of (7.20).

1The present text takes some advantage of the home page of W. Kley.
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The values at the left and right ends of the tube, vl, pl, %l and vr, pr, %r, respectively,
are assumed to be known. The values in the left (x < x1) and right (x > x4)
intervals are equal to the respective boundary values. In the actual experiment
described above, we had vl = vr = 0.

Positions of the separating interfaces
The three equations of the Riemann problem remain invariant under a transfor-
mation x′ = fx, t′ = ft, with an arbitrary scaling factor f . This means that the
solution is a similarity solution: it remains similar to itself at all times. There-
fore the positions of the separating interfaces between the diverse regimes must
be linear functions of time. If we assume that the experiment starts at t = 0 with
the pressure discontinuity at x = 0, all interfaces will move as

xi(t) = v
(int)
i t , (7.34)

such as illustrated in Fig. 7.3. We will determine the interface velocities v
(int)
i in

the following.

The boundaries of the expansion zone, x1 and x2, move backwards with the local
speed of sound, but adverse to the local velocity of the gas flow, i.e.,

x1 = (vl − csl)t , x2 = (v3 − cs3)t . (7.35)

The contact discontinuity is a consequence of the fact that the initial values pl,
%l and pr, %r are fixed in an arbitrary manner. The dynamics produces pressure
equilibrium p3 = p4, while a density jump remains. This density jump is advected
with the flow velocity, so that

x3 = v3t . (7.36)

In order to determine the shock position, x4, we recall that the velocities that
occur in the Rankine–Hugoniot relations are relative to the moving shock. Hence
we may solve relations (7.27) and (7.29) for the velocity vs of the shock (in the
rest frame),

vs = vr +
p4 − pr

%r(v4 − vr)
, (7.37)

where the yet unknown variables v4 and p4 will be determined presently. The
shock position is at

x4 = vst . (7.38)

The post-shock regime
Next we derive two equations for the post-shock quantities v4 and p4. From
Eqs. (7.32) we obtain

v4 − vr = [(p4 − pr)(Vr − V4)]
1/2 (7.39)
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(notice that v4 and vr in Eqs. (7.32) were the velocities relative to the shock front
and are negative here; the sign of the square root is consistent with v4 > vr).
From (7.33) we eliminate εi = pi/(γ−1)%i, i = 4, r, which yields

V4 = Vr
(γ−1)p4 + (γ+1)pr

(γ+1)p4 + (γ−1)pr

. (7.40)

We use this to eliminate V4 from (7.39) and obtain

v4 − vr = (p4 − pr)
{[

(γ+1)p4 + (γ−1)pr

]%r

2

}−1/2

. (7.41)

This is one equation for v4 and p4. A second equation can be derived from the
connection to the left-most region, via the rarefaction wave. There, the Riemann
invariant

Γ+ = v +

∫
cs

d%

%
(7.42)

along the characteristic curves2 x = (v − cs)t yields v + 2cs/(γ−1) = const. [Use
c2
s = pγ/% and p ∝ %γ; hence d%/% = (dp/p)/γ = 2(dcs/cs)/(γ−1)]. As all those

characteristic curves emerge from the origin, the invariant must have the same
value in all regions, and we have

Γ+ = vl +
2csl

γ − 1
= v2 +

2cs2

γ − 1
= v3 +

2cs3

γ − 1
(7.43)

for all (x, t) in the rarefaction wave and the two adjacent zones. Especially, with

cs3

csl

=

(
p3

pl

)γ−1
2γ

, p3 = p4 , v3 = v4 , (7.44)

we find the desired second equation for v4 and p4:

v4 = vl +
2csl

γ − 1

1−
(

p4

pl

)γ−1
2γ

 . (7.45)

Once v4 and p4 are known,3 the shock velocity (7.37) can be evaluated, and from
the first Rankine–Hugoniot relation, Eq. (7.27), one obtains the post-shock den-
sity

%4 = %r
vr − vs

v4 − vs

. (7.46)

2For an introduction to characteristics and Riemann invariants see, e.g., Ya. B. Zel’dovich
and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(Academic Press 1966).

3 To solve the set of equations (7.41), (7.45) in practise, one can simply iterate, using Eq. (7.41)
in the form p4 = pr + (v4−vr)

√
. . . to update p4, and then Eq. (7.45) to improve v4.
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The zones to the left of the contact discontinuity
The remaining unknown functions are readily obtained. Between the expansion
zone and the contact discontinuity, we have p3 = p4, v3 = v4 and

%3 = %l

(
p3

pl

)1/γ

. (7.47)

Within the expansion zone the velocity follows a linear variation:

v2(x, t) = vl
x2(t)− x

x2(t)− x1(t)
+ v3

x− x1(t)

x2(t)− x1(t)
. (7.48)

The pressure in this region obeys — cf. the derivation of (7.45) above —

p2 = pl

[
1− γ−1

2csl

(v2−vl)

] 2γ
γ−1

, (7.49)

and the density is

%2 = %l

(
p2

pl

)1/γ

. (7.50)

This completes the construction of the similarity solution to the Riemann prob-
lem. The sound velocities cs,i that appear in the formulas of this section are ob-
tained from the respective pressure and density values.
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