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Abstract

It is shown that the magnetic moment ~µ is a conserved quantity not only in
MHD, but also in general electrodynamics under certain not very restrictive
conditions. The propagation of magnetic moment from a region D with an evolv-
ing current system (e. g. due to dynamo action) is discussed for the two cases
of vacuum and a conducting medium, respectively, surrounding D. In the case
of vacuum, the MHD approximation no longer holds and the weak electromag-
netic wave emitted from D is important, as was pointed out by Sokoloff (1997).
In the case of an unbounded conducting medium, the classical definition of ~µ is
generalised and ~µ is shown to propagate diffusively, undisturbed by the newly
generated magnetic field.
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1 Introduction

The magnetic moment ~µ can be defined as the principal-value integral of the mag-
netic flux density over the whole space (cf. Moffatt, 1978)

~µ :=
3

2µ0
v.p.

∫

B(x) dx3 (1)

=
1

2

∫

x×j(x) dx3 , (2)

where
v.p.

∫

B dx3 := lim
R→∞

∫

KR

B dx3 (3)

denotes the three-dimensional principal-value integral, and KR:={x| x2<R2} is a
solid sphere of radius R centred at the origin. The transition from Equation (1) to
(2) is best carried out by applying the Biot-Savart law, cf. also Section 4. The second
integral, (2), gives the standard definition of the magnetic moment of a current sys-
tem filling a bounded domain. Unlike (1), it does not exist for a dynamo embedded
into a medium of homogeneous conductivity σ 6=0, where j(x)=O(1/r3) (cf. Dobler &
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Rädler, 1997). It could also be extended to a principal value, however it is more suit-
able to apply the generalisation given in Section 4. In situations where displacement
currents are important, the current field j in Equation (2) is the combination of con-
duction current jcond caused by the motion of charges, and displacement current Ḋ,
i. e. j = jcond+Ḋ. We will return to this point in Section 3.

Arnold et al (1982) pointed out that in the case of (periodic, as well as infinite)
conducting space surrounding a dynamo, the integral (1) is a conserved quantity, as
can be seen by integrating the induction equation

∂B

∂t
= curl(u×B− η curlB) (4)

over IR3 (in the principal-value sense) or over a cell of periodic space. In the periodic
case, ~µ is a topological invariant. Their argument is not as general as our result in
Section 2 since it is based on the induction equation, which is derived by neglect-
ing displacement currents. However, displacement currents do not play a rôle in
conducting media filling the whole space, cf. Section 4.

In a recent paper, Sokoloff (1997) drew attention on the fact that this conser-
vation of magnetic moment apparently contradicts the possibility of growing (or,
generally, evolving) magnetic fields due to dynamo action. To solve this dilemma he
showed that due to the contribution ~µext from outside the dynamo region D, the in-
ternal magnetic moment ~µint:=

∫

D B(x) dx3 can change with time as ~µext compensates
for this variation, keeping the total magnetic moment ~µ = ~µint+~µext constant.

In the case of a dynamo embedded into vacuum, the induction equation (4) de-
scribes the physics of only the conducting region. Outside, the full Maxwell equa-
tions have to be considered, and thus the magnetic moment seems not necessarily
to be conserved.

The aim of the present paper is to show that conservation of magnetic moment
is given in a much more general context than that of (quasi-stationary) magneto-
hydrodynamics and to illustrate the transport of magnetic moment away from a
dynamo region in the two cases of surrounding vacuum, and homogeneously con-
ducting plasma.

2 Conservation of magnetic moment in general electro-
dynamics

Maxwell’s equations

curlE = −∂B

∂t
(5)

divE =
%el

ε
(6)

allow us to represent the electric field in the following way:

E(x) =
1

4πε

∫
x−x′

|x−x′|3 %el(x
′) dx′3

︸ ︷︷ ︸

=:Epot

+
1

4π

∫
x−x′

|x−x′|3 × Ḃ(x) dx′3

︸ ︷︷ ︸

=:Esol

(7)
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(with Ḃ:=∂B/∂t), provided that the fields E(x), B(x) and %el(x) are square inte-
grable. The square integrability of electric and magnetic field is a natural assump-
tion in dynamo theory, since dynamos are usually localised systems, generating
fields of finite energy. Since curlEpot≡0, integration of Equation (5) over the sphere
KR yields

d

dt

∫

KR

B dx3 =

∫

∂KR

Esol× df . (8)

Let us now suppose that at time t=t0 the solenoidal part of the electric field decays
like

Esol(x) = O
(

1

r2+ε

)

for r=|x|→∞ (9)

with ε>0. Then, due to the finite speed of propagation inherent to Maxwell’s equa-
tions, relation (9) holds for all times t>t0 as well, and in the limit R→∞ we immedi-
ately get1

d

dt
v.p.

∫

B dx3 = 0 . (10)

This means that the magnetic moment ~µ is conserved not only in the framework
of magnetohydrodynamics, but also, under the assumptions just made, in general
electrodynamics.

Our assumption (9) is not as restrictive as it might seem. One field of realisation
are models that start with a strictly localised magnetic field, that is,

B(x) = 0 for |x|>K , (11)

with some constant K. Almost any dynamo system can be approximated arbitrarily
good in this way, if only the value of K is chosen large enough. Another class of
models compatible with condition (9) are dynamos with exponential time behaviour

B ∼ exp(γt) (12)

embedded into vacuum (case I ), or into a medium of constant conductivity σ (case
II ).

In case I, Maxwell’s equations together with the ansatz (12) yield Helmholtz
equations for E and B, and one gets

Ḃ ∼ e−κr

r
for r→∞ (13)

with κ=±γ/c, the sign chosen such that Re κ≥0. If γ has a non-vanishing real part, Ḃ

and hence Esol decay exponentially with distance r and thus (9) is fulfilled. For γ=iω,
ω∈IR, we have an oscillating dynamo emitting a monochromatic electromagnetic
wave

B,E ∼ eiω(t−r/c)

r
(14)

into the surrounding space. Since the fields (14) are obviously not square integrable,
this case is relevant to dynamo theory only as the limit of cases with finite magnetic
energy, all of which can be chosen to fulfil our condition (9).

1We write total time derivatives, since the global quantity ~µ = v.p.
∫
B dx3 is a function of t only.
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In case II, one also gets a Helmholtz-type equation and hence Equation (13),
with κ=

√
γµ0σ (cf. Dobler & Rädler, 1997), where the complex square root is chosen

such that Re
√

z ≥ 0 ∀z. For γ /∈IR−
0 , we thus again have exponential decay for r→∞,

complying with (9). For real and negative γ, most of the modes are again not square
integrable, cf. Dobler & Rädler (1997).

We note without proof that the Helmholtz equations mentioned yield ~µ=0 in
both, case I (with Re γ 6=0) and case II (with γ /∈ IR−

0 ). This shows that the exponen-
tially growing modes do not contradict the conservation of magnetic moment.

Our conservation property of total magnetic moment ~µ has few in common with
the Bondi-Gold theorem. This theorem (Bondi & Gold, 1950; cf. also Moffatt, 1979,
Rädler, 1982, for a discussion of its impact on dynamo theory, and Hollerbach et
al, 1995, for recent results) guarantees the conservation of the internal magnetic
moment ~µint :=

3

2µ0

∫

KR

B dx′3 for a spherical dynamo of radius R surrounded by

vacuum in the limit of infinite conductivity within the sphere KR. Our statement
neither involves ideal magnetohydrodynamics anywhere, nor does it prohibit the
internal magnetic moment to change, provided that this is compensated by changes
in the external magnetic moment.

3 A localised dynamo surrounded by vacuum

Sokoloff (1997) suggested that the weak low-frequency electromagnetic wave con-
nected with the time-dependent magnetic field generated by a dynamo surrounded
by vacuum compensates for the change in magnetic moment within the dynamo re-
gion. To illustrate this idea, we consider a magnetic dipole localised at the origin,
which is switched on at time t=0 in formerly field-free vacuum — say on account
of dynamo action. Higher multipole components are of no interest, because their in-
tegrals outside a sphere KR around the origin exist in the strict sense and vanish
altogether.

The general picture of the field distribution is quite obvious: The information
about the dipole having appeared at the origin propagates spherically at the speed
of light c. In the domain r>ct (r being the distance from the dipole), there is still
no field, B=0; in the domain r<ct, there is a stationary dipole field B=Bdip. At the
wave front, r=ct, finally, there is a concentrated, more complex magnetic field, the
exact form of which can be obtained by means of retarded potentials, namely

B(x, t) =
µ0

4π
curl

∫
j(x′, t− |x−x

′|
c )

|x−x′| dx′3 . (15)

Note that it is not sufficient to apply the magnetic-dipole approximation of electro-
magnetic radiation theory, because it is based on the assumption that the wave-
length λ is much smaller than the distance r from the emitting source, while in our
case the whole continuum of {λ=2π/k} is important according to the well-known
formula for the Fourier transform of the Heaviside function,

θ(r−ct) =
i

2π
v.p.

∞∫

−∞

e−ik(ct−r)

k
dk +

1

2
. (16)
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Quantitatively, we have a current density

j(x, t) = −m× grad δ(x) · θ(t) , (17)

where δ(x) denotes the three-dimensional Dirac delta function. Applying Equation
(15) to this current field, we obtain (with r=|x|)

∫
j(x′, t− |x−x

′|
c )

|x−x′| dx′3 = −m× grad
θ(ct−r)

r
= −m×

(

θ(ct−r) grad
1

r
− δ(ct−r)

r2
x

)

,

(18)
and finally, after some algebra2,

4π

µ0
B(x, t) =

8π

3
m δ(x)·θ(t)

︸ ︷︷ ︸

I

+
3x(m·x)−m r2

r5
[θ(ct−r) + rδ(ct−r)]

︸ ︷︷ ︸

II

+
x(m·x)−m r2

r3
δ′(ct−r)

︸ ︷︷ ︸

III

. (20)

Integrating this over a spherical shell makes term II vanish and we get

3

2µ0

∫

KR

B(x) dx3 = m θ(t)
︸ ︷︷ ︸

I′

+m
(

R·δ(ct−R) − θ(R−ct) · θ(t)
)

︸ ︷︷ ︸

III′

. (21)

This means that the whole magnetic moment of the external field is concentrated
in the wave front. In other words, the electromagnetic wave that carries the in-
formation about the change of the interior dipole moment, also carries away the
compensating dipole moment ~µext.

Equations (20) and (21) can easily be generalised to the case of a localised mag-
netic dipole evolving arbitrarily in time, j(x, t)=−m(t)× grad δ(x). This is done by
convolving (20) and (21) with ṁ(t), according to the formula

m(t) =

∞∫

−∞

ṁ(t−t′) θ(t′) dt′ (22)

that holds for an arbitrary vector function m(t) with lim
t→∞

m(t)= 0.
Returning to Equation (2) as an integral over the total current density j =

jcond+Ḋ, we easily see that the conduction current jcond is located at the origin and
the displacement current Ḋ at the wave front. This again leads us to the interpre-
tation given above.

2Note that simply inserting (18) into Equation (15) and exploiting the relation ∆1/r = −4πδ(x)
would yield a term I equal to 4πmδ(x)θ(t), i. e. 3/2 of the right result. This is connected with the
non-integrability of dipole fields at the origin and can be avoided by regarding the magnetic field of a
current on the surface of a small sphere of radius ε,

j =
3

4π
|m|

δ(r−ε)

ε3
sin ϑ eϕ (19)

(in spherical coordinates (r, ϑ, ϕ) with axis parallel to m) and letting ε→+0.
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4 Propagation of magnetic moment in a conducting
medium

In the case of plasma of constant conductivity σext surrounding the dynamo, it is not
clear a priori that the integral (1) exists even as a principal value, because the mag-
netic field decays only as O(1/r2) for r→∞ (Roberts, 1994; Dobler & Rädler, 1997).
We will show that the principal value (1) still exists in this case and obtain a gen-
eralisation of the integral (2) for a stationary dynamo surrounded by a conducting
medium.

In this section, we will use equations of magnetohydrodynamics, i. e. neglect any
displacement currents. This is well justified in the given case of a dynamo acting in
a conducting medium that fills the whole space, since it is a very good approxima-
tion in all cosmic plasmas (like the medium filling the dynamo discussed in Section
3), cf. for example Moffatt (1978). But now, in contrast to the case of insulating sur-
roundings, the weak “electromagnetic” wave outside D is determined by the induc-
tion equation (4), too. This is because its displacement current is by a factor ∼U 2/c2

weaker than the conduction current (U being a characteristic material velocity) and
can therefore be neglected for non-relativistic objects.

A dynamo in a finite region D of conductivity σ(x) (including turbulent diffu-
sion), surrounded by an infinite medium of constant diffusivity η=1/(µ0σext) can be
described by the following equations

∂B

∂t
− η∆B = curlF (23)

divB = 0 , (24)

where we suppose F to be different from zero only inside D.
In the case of mean-field dynamos, the induced electromotive force F can be

expressed by
F = u×B + αB− β̃ curlB , (25)

with the “turbulent” diffusivity

β̃(x) =
1

µ0

(
1

σ(x)
− 1

σext

)

. (26)

This formal transformation is similar to the standard transformation yielding
σturb = σ/(1+µ0σβ) that can be found in text books on mean-field MHD (e. g. Krause
& Rädler, 1980). It allows us to work with the constant diffusivity η in all space,
since the deviations of the actual diffusivity from this value that occur within the
dynamo region are shifted into the right-hand side of Equation (23).

Beyond the framework of mean-field theory, Equation (25) can not be used. We
stress however that any induction process in D can be expressed by Equations (23)
and (24), only F will in general be linked to B in a more complicated way, e. g.
involving the Navier-Stokes equations. A procedure analogous to the above will still
allow us to work with the homogeneous diffusivity η in all space.

As was shown by Dobler & Rädler (1997), in the steady case ∂B/∂t≡0 Equations
(23), (24) are equivalent to the integral equation

B(x) =
µ0σext

4π

∫

D

grad
1

|x−x′| × F(x′) dx′3 . (27)
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Integrating this over a sphere KR⊃D and making use of the formula
∫

KR

grad
1

|x−x′| dx3 =
4π

3
x′ for R > |x′| , (28)

we find that
3

2µ0

∫

KR

B(x) dx3 =
1

2
σext

∫

D

x′ ×F(x′) dx′3 . (29)

As the integral on the right is independent from R, we find that it is equal to ~µ as
defined by (1). The magnetic moment thus exists and moreover can be calculated by
an integral over the bounded region D.

It is not difficult to see that (29) contains Equation (2) as the limit for σext→∞,
keeping σ(x) fixed. Therefore, Equation (29) is really a generalisation of the classical
definition (2).

Let us now return to the time-dependent case. In the case of a dynamo embedded
into a conducting medium, the magnetic moment ~µext propagates towards infinity
in the form of neither electromagnetic, nor dynamo wave. Rather, it is transported
diffusively, i. e. magnetic field that is subject to diffusion with transport coefficient
η =1/(µ0σext) carries it away.

This statement can be substantiated with the following formulas. With the help
of Green’s function of the left-hand side of Equation (23)

G(x, t) =
1

(4πη t)
3
2

e
− x

2

4η t (30)

we can write the solution B(x, t) of Equations (23), (24) in the form of an integral
equation

B(x, t) =

∫

IR3

dx′3G(x−x′, t)B(x′, 0) (31)

−
t∫

0

dt′
∫

D

dx′3 grad′ G(x−x′, t−t′)×F(x′, t′) ,

cf. Dobler & Rädler (1997).
Integrating over a sphere KR of radius R centred at the origin, we get

∫

KR

B(x, t) dx3 =

∫

IR3

dx′3
∫

KR

dx3 G(x−x′, t)

︸ ︷︷ ︸

1 −O
(

e−
(R−r′)2

4η t

)

B(x′, 0) +

+

t∫

0

dt′
∫

D

dx′3
∫

∂KR

G(x−x′, t−t′) df

︸ ︷︷ ︸

∼ 1√
4πη t

R

r′
x′

r′
e
−

(R−r′)2

4η t

for R � (r′,
√

4η t)

×F(x′, t′) . (32)
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Letting R→∞, it becomes evident that generation (F ) produces magnetic field with
net magnetic moment ≡0,3 and the magnetic moment ~µ of the whole field is due to
the initial field B(x, 0), which propagates diffusively.

5 Conclusion

We have shown that, under certain assumptions, the total magnetic moment ~µ de-
fined by (1) is a conserved quantity for dynamo systems and generally evolving cur-
rent systems. We have demonstrated that this conservation law is nevertheless com-
patible with dynamo action in a bounded region surrounded by an either insulating
or homogeneously conducting medium. We stress once more that the considerations
of the rate of change of ~µ given by Moffatt (1978) and related to the Bondi-Gold the-
orem (Bondi & Gold, 1950) concern the internal magnetic moment ~µint only, since
they left the displacement currents due to electromagnetic wave propagation out of
consideration. ~µint can change with time and this is why dynamo processes are not
prohibited by our conservation law.

In the case of stationary currents, ∂j/∂t≡ ∂B/∂t≡ 0, the magnetic moment is in
general not zero but rather given by the integral (1) or its variants (2) (with j≡jcond)
or (29). This indicates that such a saturated field can not be produced by dynamos
(or other physical processes) from a very weak seed field with negligible magnetic
moment ~µ. But this is not paradoxical as it might seem at a first glance. The dif-
ference between a really stationary field and an almost stationary one produced by
long-lasting dynamo action is substantial only far away from the dynamo region D,
outside some “sphere of influence” of the dynamo history, at r>∼Rinfl. Suppose that
the dynamo reached a steady regime within D at time t0 and denote the magnetic
flux density generated by this dynamo system by B(x, t; t0). For surrounding vac-
uum, we have Rinfl = c(t−t0), since within this radius the fields are strictly steady.
In a homogeneously conducting medium, Equation (32) gives Rinfl ≈

√

η(t−t0). The
apparent paradox just mentioned is due to the illegal interchange of two limits: the
limit R→∞ in the definition (3) of the principal value, and the limit t0 →−∞ to
obtain a strictly stationary field. The two quantities

~µ1 := lim
t0→−∞

lim
R→∞

∫

KR

B(x, t; t0) dx3 = lim
t0→−∞

~µ(t; t0) (33)

~µ2 := lim
R→∞

∫

KR

lim
t0→−∞

B(x, t; t0) dx3 (34)

take different values in our scenario where a “stationary” magnetic field is produced
from an initial field with zero magnetic moment: While ~µ1=0 since ~µ is conserved
and ~µ(t0; t0)=0, the second quantity ~µ2 corresponds to the value given by Equation
(1) for the infinitely extended stationary field. It depends on the given situation (and
the questions to be investigated), which of the quantities ~µ1 and ~µ2 is the “better”
one. According to our conservation law from Section 2, both of them are conserved.

3This is quite reasonable, because in a conducting space the newly generated field lines are essen-
tially closed within a finite region and

∫

T

B dx3 over a closed magnetic flux tube T is equal to zero.
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delenija koêfficientov perenosa v êlektrodinamike srednikh polej,” Vestnik Moskovskogo
Universiteta. Serija 3. Fizika i astronomija 5, 3–6 (1997)).


