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Abstract. We present a numerical model of an accretion disc with mean-field dynamo action
that develops pressure-driven collimated outflow near the rotation axis and a centrifugally driven
uncollimated wind in the outer parts. The jet is collimated and confined by the azimuthal magnetic
field that is produced by the dynamo in the disc and advected to the disc corona. The jet is hot and
dense, but has low angular momentum. We also briefly discuss the possible generation of magnetic
fields in a jet by the screw dynamo.

1 Introduction

The importance of magnetic fields for accretion is widely recognized, and the turbulent
dynamo is believed to be the main source of magnetic fields in accretion discs (Pudritz,
1981; Stepinski & Levy, 1988; Brandenburg et al., 1995). Likewise, magnetic fields are
considered a major factor in launching a wind and collimating it into a jet in young
stellar objects and active galactic nuclei; see Königl & Pudritz (1999) for a recent
review of stellar outflows. Yet, most MHD models of the formation and collimation
of jets rely on an externally imposed poloidal magnetic field and disregard any field
produced in the disc. Here we discuss how jets can be launched and collimated in
systems where the magnetic field is self-consistently generated in the disc. We use
parameters of young stellar objects in our estimates, but the basic physical processes
discussed might be operative around black holes as well.

Blandford & Payne (1982) showed how jet flows can be launched and collimated by
centrifugal and magnetic forces. This idea has been further developed by Ustyugova
et al. (1995), Romanova et al. (1997, 1998), Ouyed, Pudritz & Stone (1997), Ouyed &
Pudritz (1997a,b, 1999), who consider a perfectly conducting fluid in the corona of an
accretion disc, permeated by an external poloidal magnetic field. The physics of the
accretion disc is subsumed into the boundary conditions at the base of the corona:
the disc at the boundary is assumed to be in Keplerian rotation, no radial inflow is
allowed on that boundary, and the system is driven by matter injection from the disc.
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Since any accretion is neglected, these models eventually develop a steady state with
a magneto-centrifugal wind collimated by the toroidal magnetic field, which again is
produced by the vertical shear in rotation (i. e. ∂ω/∂z).

In our model, no external magnetic field is assumed. We simulate an accretion
disc surrounded by a corona, with magnetic field maintained by dynamo action in the
disc, with non-ideal, compressible MHD equations and a prescribed entropy profile.
The disc rotates at nearly Keplerian velocity in the gravitational field of a central
object. A wind develops that carries toroidal magnetic field into the corona. This
field eventually collimates the wind, producing a well collimated outflow aligned with
the disc rotation axis.

2 The model

A simple way to implement a dense, relatively cool disc embedded in a rarefied, hot
corona, is to prescribe an appropriate distribution s(x) of specific entropy, s being
small within the disc and large in the corona.

To make our model as simple as possible, we introduce a mass source in order to
balance mass loss through the boundaries of the computational domain, so that the
continuity equation takes the form

D%

Dt
= −% div u + q% , (1)

where D/Dt = ∂/∂t+(u·grad) and u is the velocity field. The mass source is localized
in the disc and described by q% = τ−1ξ(x)[%ref−%]+, where τ is a short relaxation time,
[ψ]+ = (ψ + |ψ|)/2, and %ref is the initial equilibrium distribution.

The profile ξ(x) defines our disc, interpolating smoothly between the value 1 in
the midplane of the disc, and 0 throughout the corona. We also use it to prescribe
the entropy s(x) such that s is low in the disc and high in the corona, the resulting
density contrast being of order 10.

The mass source injects matter at Keplerian velocity uK, so the equation of motion
in a gravitational potential Φ takes the form

%
Du
Dt

= − grad p− % gradΦ + F + (uK−u)q% , (2)

where F = j×B +∇ · σ is the sum of Lorentz and viscous forces, with σ the stress
tensor.

We solve the induction equation in terms of the vector potential A,

∂A
∂t

= u×B + αB− ηµ0j , (3)

so that B = rotA is the magnetic field and the current density j is given by µ0j =
grad div A−∆A. The term αB is responsible for mean-field dynamo action, producing
a predominantly toroidal magnetic field in the disc.

We adopt cylindrical polar coordinates (r, ϕ, z) and consider axially symmetric
solutions of Eqs. (1)–(3).
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length velocity column density time magnetic field accretion rate

l cs0 σ0 l/cs0 cs0
√
µ0σ0/l lσ0cs0

0.1AU 100 km/s 10 kg/m2 1.7 d 3 mT (30 G) 2×10−7 M¯/yr

Tab. 1. The units adopted in our model.

Our α-coefficient is of the form

α(r, z) = α0
z

z0

ξ(r, z)
1 + v2

A/v
2
A0

, (4)

where vA = B/
√
%µ0 is the Alfvén speed and vA0 is an effective turbulent velocity in

the disc, which can be related to the local sound speed cs. For the magnetic diffusivity
we assume η = η0 + ηtξ(r, z), which is a sum of a uniform background value η0 and a
turbulent magnetic diffusivity ηt present in the disc.

Our initial state is a hydrostatic equilibrium that is obtained by integrating the
equation of motion from u = 0 at infinity down to the midplane. Everywhere outside
the disc, u = 0, while in the disc midplane, where temperature is low, u ≈ uK.

Dimensionless variables are defined using the units given in Table 1. For our
reference model we adopt the following set of parameters: α0 = −0.3, ηt = 10−3,
η0 = 5× 10−4, vA0 = 3 cs, τ = 0.1. The disc, as defined by the profile ξ(r, z), has
half-thickness z0 = 0.15 and radius r0 = 1.5. The kinematic viscosity is a function of
position; it consists of a background value ν = 0.02Umaxδx — where δx is the grid
spacing and Umax = max(|u|, cs, vA) — and a compression-dependent shock viscosity.
We also include artificial mass diffusion to stabilize shocks.

The equations are solved numerically, using a finite-difference scheme on the com-
putational domain 0 ≤ r ≤ 4, |z| ≤ 4 with a grid size of 201× 401 points. We apply
open boundary conditions at the outer boundaries; furthermore, any inward normal
component of the velocity field is suppressed there.

3 Results

Motivated by the results of Brandenburg et al. (1995), we choose α0 negative in
Eq. (4). With the numbers given above, the dynamo is in an α2 regime at r <∼ 1,
whereas an αΩ-dynamo acts in the outer parts of the disc. The dynamo number
D = CαCω ' 600 r−3/2 strongly exceeds the critical value (of order 10 without a wind
and with vacuum boundary conditions), and a rough estimate of the local magnetic
field growth time τm due to dynamo action is τm ' 0.5 r3/4.

The initial, hydro“static” state is unstable, firstly because accretion flow develops
spontaneously due to angular momentum transfer by viscous and magnetic stresses
and, secondly, because of the vertical shear in the angular velocity between the disc
and the corona (Urpin & Brandenburg, 1998). As a result, meridional circulation
develops, which soon transforms into a pressure driven wind.
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Fig. 1. Initial (hydro“static”) state of the system. Left: initial velocity; ruϕ is shown colour coded;
upol is initially absent. Centre: temperature (colour coded) and density (contour lines). Note the
cold, dense disc surrounded by the spherically symmetric corona. Right: magnetic field; Bϕ is initially
absent; field lines of Bpol are shown.

The initial magnetic field differs from zero only in the disc (see Fig. 1) where its
strength is 10−3 and it is composed of dipolar and quadrupolar components with
relative weight 2:1. Without any meridional flows, the dominant mode in a disc with
positive D is an oscillating dipolar mode. The dominant mode becomes steady as soon
as significant outflow has developed.

Although the initial magnetic field is poloidal, the dynamo soon amplifies the az-
imuthal field in the disc, and then supplies it to the corona. As a result, the corona
outside the jet region is filled by strong azimuthal field for t >∼ 15. The main mecha-
nisms producing Bϕ in the corona are advection by the wind and magnetic buoyancy.

The field in the disc is dominated by the toroidal component, but the poloidal
field becomes comparable when outflow develops. At the disc surface, we typically
have Bz,r/Bϕ ' 1. The structure of the poloidal field is shown in Figs. 2(c).

The angle between the disc surface and the field lines is less than 60◦ in the
outer parts of the disc. Thus, the wind is largely magneto-centrifugally driven here:
the Alfvén surface is far away from the disc, as can be seen in Fig. 3. However, the
thermal pressure gradient is the dominant accelerating force closer to the rotation
axis where the flow is well collimated. In fact, the build-up of the pressure gradient
near the central object is controlled by our fixed entropy distribution: once the matter
leaves the disc, it is heated to a high temperature, which implies enhanced pressure
for a given entropy.

Fig. 3 shows that mass replenishment in the disc is concentrated to a few small
regions. From these regions, matter accretes inwards and eventually most of it ends
up in the collimated outflow.

The collimated, fast, dense part of the outflow has a well defined boundary clearly
visible in Fig. 2(a) and (b) and (c). The collimation and confinement is due to the
inward pressure gradient produced by the azimuthal field. This can be seen from the
right Fig. 2(d) where we show the radial profiles of various pressure components.
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Fig. 2. Overview for t = 44 (left) and t = 88 (right). (a) Specific angular momentum (colour
coded) and poloidal velocity (arrows). (b) Temperature (colour coded) and density (contour lines).
(c) Azimuthal (colour coded) and poloidal components (field lines) of magnetic field. (d) Pressure
profiles at z = 1. Thermal pressure p (solid line); toroidal magnetic pressure (dashed); poloidal
magnetic pressure (dotted).

4 Outlook

Our model indicates that a dynamo-generated B-field can indeed collimate wind from
an accretion disc into an axial jet. Many of the idealizations in the model should now
be removed to see how far they influence this result.

Particularly, we plan to replace the mass source in the disc by a corresponding
inflow through the radial boundary. Further, instead of imposing a fixed entropy
profile, we should solve an energy equation, including parameterized heating when
matter leaves the disc and radiative cooling, which is expected to be important if the
vertical size of the computational domain is >∼ 10AU.

On the long term, we plan to extend the model to three spatial dimensions, which
will allow us to address, amongst other interesting questions, the problem of MHD
stability of the jet.
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Brandenburg, A., Nordlund, Å., Stein, R. F. (1995) ApJ 446, 741.
Königl, A., Pudritz, R. (1999) in Protostars and Planets III, ed. V. Mannings, A. Boss, S. Russell

(Univ. Arizona Press) (astro-ph/9903168).
Kudoh, T., Matsumoto, R., Shibata, K. (1998) ApJ 508, 186.

5



0 1 2 3 4
ϖ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
z

Fig. 3. Alfven surface (solid line) and local mass production rate q% (colour coded) in the vicinity of
the disc (indicated by the dotted line) at t = 88.
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