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Abstract. Using numerical simulations we investigate the (in)-stability and saturation behaviour
of moderately compressible, cylindrical Taylor–Couette flow in the presence of a uniform axial
magnetic field. For Rayleigh-stable configurations, we find magnetically induced Taylor vortices as
predicted by linear theory, with both axisymmetric and non-axisymmetric solutions, depending on
the Hartmann number.

The flow shows clear indications of the magneto-rotational instability which is well-known from
numerical simulations in accretion disc geometry. In the saturated state, the structure of the flow and
the magnetic field can be very different from the linear phase of the instability.

1. TAYLOR–COUETTE FLOW

Taylor–Couette flow — the viscous flow between two rotating coaxial cylinders is — one
of the most intensively studied flows in hydrodynamics [for a comprehensive overview,
see 1]. For a fluid of constant dynamic viscosity, the Navier–Stokes equation has a simple
and highly symmetric solution, the so-called (cylindrical) Couette flow,
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whereR1 and R2 denote the radius of the inner and outer cylinder,Ω1 and Ω2 are
the corresponding angular velocities, andr denotes cylindrical radius. The other two
velocity components vanish for Couette flow,

ur = uz = 0 . (2)

In the limit of vanishing viscosity, the solution (1), (2) is unstable whenever the
specific angular momentuml1 ≡ Ω1R2

1, l2 ≡ Ω2R2
2 at the two cylinders satisfies the

Rayleigh criterion
sgnΩ1 (l2− l1) < 0 , (3)

(wheresgnΩ1 denotes the sign ofΩ1) and is stable otherwise. For real fluids, viscosity
can damp the instability, and it will only occur if the Taylor number

Ta≡ 4Ω2
1(R2−R1)4

ν2 (4)



exceeds a certain threshold (ν denotes the kinematic viscosity of the fluid).
If the fluid is electrically well conducting, the presence of a magnetic field can

change the stability properties completely [2–5]. The strength of the magnetic field is
characterized by a new dimensionless parameter, the Hartmann number

Ha≡ B(R2−R1)√µ0ρνη
=

vA(R2−R1)√νη
, (5)

whereµ0 denotes vacuum permeability,ρ and η density and magnetic diffusivity of
the fluid, andvA ≡ B/

√µ0ρ is the Alfvén speed. For an ideal fluid (ν = η = 0), the
change in stability properties is particularly drastic. For strong magnetic fields or thin
gapsR2−R1, the magnetic field rather has a stabilizing function [3, 6]. But in the limit
of weak magnetic fields, the Couette flow becomes unstable provided that the angular
velocities of the two cylinders satisfy the condition

sgnΩ1 (Ω2−Ω1) < 0 , (6)

which is much weaker than the Rayleigh criterion (3). This change can be interpreted in
terms of the dominant mechanism of angular momentum transport: In the nonmagnetic
case advection is the only radial transport mechanism, and thus the gradient of specific
angular momentuml (i. e. the deviation from the statel = constwhere no angular mo-
mentum would be transported) determines the stability of the flow. The magnetic tension
force, on the other hand, tries to synchronize angular velocityω, so in the magnetic case
the direction of angular momentum transport is determined by the gradientdω/dr.

Even as|B| → 0, the fastest growth rate is of order|Ω1|, i. e. remains finite. However,
the wave number corresponding to that fastest growing eigenmode scales likek ∼
|Ω1|/vA, and for very weak magnetic fields, dissipative effects will eventually destroy
the instability [see also 7]

This magnetorotational instability(MRI), i. e. the destabilizing effect of magnetic
fields on rotating shear flows, is thought to be the main mechanism for rendering accre-
tion discs turbulent, and thus viscous. While nonlinear instabilities have been proposed
to explain turbulent accretion discs as well [8] and may be relevant for very cool discs,
the MRI certainly plays a central role in the theory of accretion discs, and many numer-
ical simulations have confirmed that it is indeed very efficient in transforming a laminar
accretion disc into a turbulent one [see e.g. 5, 9–11].

While even weak magnetic fields are enough for the MRI to maintain an accretion
disc in a turbulent state, the magnetic fields must eventually be maintained against
Ohmic decay. From dynamo theory, we know that magnetic field generation is a natural
consequence of the turbulent, three-dimensional nature of the rotating accretion flow.
This gives rise to a very elegant scenario for magnetized accretion discs, in which
turbulence and magnetic field maintain each other symbiotically. This scenario has been
verified in a number of numerical experiments [9, 10, 12].

The importance of the MRI for accretion discs and possibly also for galactic discs
[13, 14] is one of the motivations for building magnetic Taylor–Couette laboratory exper-
iments, a topic that will be discussed at length in other chapters of this book. One chal-
lenge for experiments is the low electrical conductivity of liquid metals, which makes
Ohmic dissipation a much more prominent effect than in astrophysical objects. The low



conductivity also makes it difficult to numerically model laboratory experiments, since
the low magnetic Prandtl number (Pm≡ ν/η ∼ 10−5 for liquid sodium and similar or
lower for other liquid metals) leads to vastly different scales for the flow and the mag-
netic field. We believe nevertheless that models withPmof order unity can teach us a lot
about magnetic Taylor–Couette flow. These values make it feasible to conduct parameter
studies, and more expensive calculations with lowerPmcan be targeted at particularly
interesting parameter regimes once these have been identified. Also, highly turbulent
media are often modelled with a turbulent magnetic Prandtl number close to unity.

In the context of dissipative magnetic Taylor–Couette flow, the MRI will manifest
itself in a modified (lowered) threshold for the formation of Taylor-like vortices, and in
the fact that such vortices form for ratiosΩ2/Ω1 where the Couette profile (1), (2) would
be stable in the absence of magnetic fields.

Previous studies have focused on the onset of dynamo action in both the linear [15]
and nonlinear case [16]. A related flow, even easier capable of dynamo action, is the
so-called helical Couette flow, where the cylinders also move in the axial direction.
The resulting velocity field gives rise to the well-known screw dynamo, which is well-
investigated both theoretically [17–21] and numerically [22–26].

In the present paper we take a different approach and consider cylindrical Taylor–
Couette flow in the presence of an axial, uniform magnetic fieldB0ez. In this system,
magnetic induction due to the imposed field and intrinsic dynamo action cannot easily
be disentangled (if at all), but still the resulting flow can have properties that would make
it a dynamo in the absence of the external field.

Linear stability analysis of this configuration has shown that the imposed magnetic
field indeed gives rise to the MRI as discussed above [27], and for certain parameters,
non-axisymmetric Taylor vortices are the preferred modes [28]. These results have been
confirmed in the limits of very low and very high magnetic Prandtl number [29].

2. OUR MODEL

2.1. Equations

We consider the flow between two concentric cylinders as described in Sec. 1. Our
numerical code uses cylindrical coordinates(r,ϕ,z) and solves the compressible MHD
equations for (logarithmic) densitylnρ , fluid velocity u, and magnetic vector potential
A,

D lnρ
Dt

= −divu , (7)

Du
Dt

= −1
ρ

gradp+
j×B

ρ
+

1
ρ

div(2ρνS) , (8)

∂A
∂ t

= u×curlA−〈(u×B) ·er〉ϕ,zer +η∆A , (9)

where D/Dt ≡ ∂/∂ t + u · grad denotes the advective time derivative,B = curlA is
the magnetic flux density,µ0j = curlB the current density, andSik ≡ [∂iuk + ∂kui −



TABLE 1. Parameters and properties of the different runs. Other parameters areR1 = 0.5,
R2 = 1, Lz = 1, ν = η = 7×10−4. Linear modes are characterized by their axial and azimuthal
wave numbersk, m; longitudinal wave numbersk are listed in units of2π/Lz. γ denotes the
growth rated ln ||uz||/dt of the mode.

Run Ω1 Ω2 B0 l2/l1 Ha
Linear

structure γ Saturated
structure

1a 2.0 0.5 0.00 1.0 0.0 k = 2,m= 0 0.13 k = 2,m= 0
1b 2.0 0.5 0.02 1.0 14.3 k = 3,m= 0 0.48 k = 3,m= 0
1c 2.0 0.5 0.05 1.0 35.7 k = 3,m= 0 0.72 k = 3,m= 0
1d 2.0 0.5 0.10 1.0 71.4 k = 2, “wavy” 0.64 k = 1, wavy
1e 2.0 0.5 0.20 1.0 142.9 k = 1,m= 0 0.42 k = 1, wavy
1f 2.0 0.5 0.50 1.0 357.1 k = 1,m= 0 −0.03 —
1g 2.0 0.5 1.00 1.0 714.3 k = 1,m= 0 −0.03 —

2a 2.0 0.667 0.10 1.33 71.4 k = 2,m= 1/“wavy” 0.56 k = 2, wavy

3a 2.0 1.0 0.05 2.0 35.7 k = 3,m= 0 ≈ 0.36
3b 2.0 1.0 0.10 2.0 71.4 k = 2,m= 1 0.36 k = 2,m= 0
3c 2.0 1.0 0.20 2.0 142.9 k = 1, “wavy” ≈ 0.26 k = 1, wavy

(2/3)δik divu]/2 is the traceless rate-of-strain tensor. The second term on the right-hand-
side of the induction equation (9) does not contribute to the magnetic field and is present
for purely numerical reasons. To evolve Eqs. (7)–(9), we use 6th-order finite differences
in space and 3rd-order Runge–Kutta time-stepping scheme.

While the code solves the compressible MHD equations (and uses an isothermal
equation of state), we think that our results are only moderately influenced by the
compressibility of the fluid (but see Sec. 2.3.3 below). For reasons of efficiency, we
have used a Mach number of order unity and the corresponding density contrast is about
ρ2/ρ1 ≈ 1.5. In other simulations [25], we had found that for a Mach number of about
0.3 weakly compressible and incompressible results are almost identical.

Our initial magnetic field is purely vertical and uniform,B = B0ez. The initial velocity
is the Couette profile (1), (2), superimposed with white noise at very low amplitude.

The vertical boundary conditions are periodic, while radially we have no-slip, impen-
etrable conditions for the velocity and perfectly conducting conditions for the magnetic
field. We note that these magnetic boundary conditions do not allow the total magnetic
flux between the cylinders to change and thus our magnetic field has no chance of de-
caying.

2.2. Parameters

The inner and outer radius are chosen asR1 = 0.5, R2 = 1, while the full height of
the (periodic) cylinders isLz = 1. In all runs presented here, viscosity and magnetic
permeability are equal, i. e. the magnetic Prandtl number isPm= 1. Table 1 lists other
parameters of the individual runs, together with some of the properties of the flow and
magnetic field.
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FIGURE 1. Horizontal sections of velocityu (left) and residual magnetic fieldBres≡B−B0ez (right) for
the linear phase of Run 1b. Arrows indicate the tangential componentsuϕ , uz, while colours represent the
radial component with bright (dark) colours representing a component towards (away from) the viewer,
i. e. positive (negative)Br . [As an exception, the sign has been reversed foruϕ , so bright colour means
positiveuϕ here to avoid excessive dark colours.] Both velocity and magnetic field are axisymmetric in
this run.

2.3. Results

2.3.1. Geometry

As Table 1 shows, varying the Hartmann number changes the structure of the linear
modes considerably. For weak magnetic fields (Runs 1b, 1c), the preferred mode has
three nodes in the vertical direction, i. e. the vertical size of the cylinder accommodates
six Taylor half-cells. This configuration is shown in Fig. 1. With increasing Hartmann
numberHa, the vertical wave number gets larger, as the magnetic field is able to
synchronize velocity over a larger vertical distance. For both weak and strong magnetic
field, the vortices are axisymmetric (azimuthal wave numberm= 0).

However, for Run 1d with its moderate Hartmann number of about70, the linear stage
shows a “wavy” mode (see below), and the same holds for Run 2a which has the same
Hartmann number. The velocity for the latter case is shown in Figure 2, which shows
the full velocity and the residual magnetic fieldBres≡ B−B0ez, on a cylindrical surface,
while Fig. 3 shows the same in a vertical section. One can clearly see the vertical wave
numberk= 2k1, wherek1≡ 2π/Lz is the lowest non-vanishing wave number compatible
with the vertical sizeLz of the cylinder.

The azimuthal structure is a superposition of different wave numbers with at least
m = 0,±1 prominently present. Note that here during the linear phase these modes
evolve independently and must thus have very similar growth rates to coexist for a long
time. We note that, from Taylor–Couette experiments, the “wavy mode” is known [1],
where nodal surfaces ofuz (or similar diagnostics) are not planar, but oscillate inϕ.
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FIGURE 2. Velocity u (top) and residual magnetic fieldBres (bottom) on a cylindrical shellr = 0.75
for the linear stage of Run 2a. Representation is as in Fig. 1, in particular bright colours represent positive
radial componentsur , Br .
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FIGURE 3. As in Fig. 1, but for the linear phase of Run 2a.

The simplest wavy mode can be described as a superposition of modes(k,m= 0) and
(k,m=±1) with appropriate phase factors. However, even if some combination of linear
modes looks like a wavy mode, this can only be a coincidence, since the relative phases
of linear modes are arbitrary, and even evolve in time. Real wavy modes are a nonlinear
phenomenon.



0 1 2 3 4 5 6
ϕ

0.0

0.2

0.4

0.6

0.8
z

0 1 2 3 4 5 6
ϕ

0.0

0.2

0.4

0.6

0.8
z

0 1 2 3 4 5 6
ϕ

0.0

0.2

0.4

0.6

0.8

z

0 1 2 3 4 5 6
ϕ

0.0

0.2

0.4

0.6

0.8

z

FIGURE 4. Same as Fig. 2, but for the saturated phase of Run 2a.

After some time, the exponential growth of the kinematic phase slows down and even-
tually a saturated state is reached, in which magnetic and kinetic energy are stationary
or vary by a moderate percentage around some average value. This saturated regime
can look quite different from the kinematic phase as is shown in Figs. 4 and 5. The az-
imuthal structure is obviously no longer described by the first three azimuthal modes
|m|= 0,±1, but involves higher harmonics as well (Fig. 4). This pattern visually resem-
bles the hydrodynamical “wavy mode” of Taylor-Couette flow, although we find here a
less symmetric and more structured geometry compared to the simplest manifestations
of the hydrodynamical wavy mode.

Not all Runs maintain their geometric structure in the nonlinear regime. As can be
seen in Table 1, some Runs (1e and 3a) switch from axisymmetric to non-axisymmetric
behaviour when saturating. On the other hand, Run 3a switches from a clearm = 1
mode during the linear phase to an axisymmetric saturated state. These findings clearly
demonstrate that it can be misleading to extrapolate linear results to the nonlinear
regime.

2.3.2. Velocity profile

In Fig. 6, we have plotteduϕ as a function of radius for the saturated phase of
Run 2a, with three different representations for the azimuthal velocity component: We
compare the radial profiles of angular velocityω ≡ uϕ/r, azimuthal velocityuϕ , and
specific angular momentuml ≡ ruϕ . While the boundary values for all three curves
are determined byR1,Ω1, R2, andΩ2, the profiles between the boundaries reflect the
physics of angular momentum transport. If angular momentum was transported mainly
due to radial advection, the profilel(r) would be roughly constant (like entropy is mostly
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FIGURE 5. Same as in Fig. 3, but for the saturated phase of Run 2a.
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FIGURE 6. Scatter plot showing different representations of the azimuthal velocity component as
function of r for the saturated phase of Run 2a. Left: Angular velocityω. Middle: Azimuthal velocity
uϕ . Right: Specific angular momentuml .

constant in thermal convection layers); this is clearly not the case in Fig. 6. It is rather the
angular velocityω(r) that has been synchronized by the flow, which is a clear indicator
for the magnetic tension force being the dominant mechanism of angular momentum
transport.

2.3.3. A potential compressibility effect

For Runs 1a–g, the specific angular momenta on the two cylinders are equal,l1 = l2,
thus we expect the hydrodynamic Couette flow to be marginally stable in the absence of
viscosity according to Rayleigh’s criterion. If viscosity is present, it is natural to expect
that the system becomes stable because perturbations will now be damped, even if that
damping is small. To our surprise, we found however that Run 1a, where the magnetic



field is zero, develops Taylor vortices just like the magnetic cases, albeit the growth rate
is lower. This is hard to understand, sincel is not only equal on the two cylinders, but
according to Eq. (1), we have

l(r) = l1 = const (10)

everywhere. Thus, advection will not have any effect on the distribution of angular
momentum, and there is no obvious other mechanism that could transport it at all.

However, compressibility can make a difference. Since we have setkinematicviscos-
ity ν = const, rather than assuming constantdynamicviscosity, ther-dependent equilib-
rium solution is not exactly the Couette profile (1). But any deviation from the Couette
profile will introduce a gradientdl/dr 6= 0 which takes on both signs (we find thatl has
a minimum nearr = 0.7 and thusdl/dr < 0 nearR1 anddl/dr > 0 closer toR2). If vis-
cosity is low enough, the part withdl/dr < 0 will be unstable and drive Taylor vortices.
We thus believe that the flow we find in Run 1a is due to compressibility effects, which
cause viscous angular momentum transport.

2.3.4. Helicity and alpha effect

In the context of mean-field theory [30], a crucial parameter describing the magnetic
field generation properties of many dynamo systems is theα-effect [31]. In their work
on linear properties of magnetic Taylor-Couette flow, Rüdiger & Zhang [27] discussed
the possibility of anα-effect in that type of flow. For infinitely long cylinders and in the
linear regime, the flow is strictly periodic inzand thus theα effect oscillates around zero
along that direction. Noting that such a system has no netα effect, the authors seem to
conclude that it is not suitable as a mean-field dynamo.

We note however that it is too restrictive to judge the dynamo properties solely
by the net sign of theα-effect. In fact, most cosmic dynamos have almost exactly
vanishingαnet≡

∫
α(x)dV, becauseα is antisymmetric with respect to their equatorial

or symmetry plane. Nevertheless theα-effect in these objects is able to generate all
kinds of cosmic magnetic fields. It is not a priori clear that a periodic array of cells of
alternating kinetic helicity cannot be an interesting dynamo system in its own.

In Figs. 7 and 8, we show the distribution of different quantities related to theα effect.
In the quasi-linear approximation, theα effect is given by [32, 33]

α =
τ
3

(
−〈

u′ ·curlu′
〉
+

1
ρ

〈
B′ · j ′〉

)
, (11)

whereτ is the turbulent turnover time andu′ ≡ u− 〈u〉, etc. For our geometry, the
averages〈·〉 are conveniently taken over azimuthϕ. In the figures we show kinetic
helicity Hkin ≡ 〈u′ ·curlu′〉, the current helicityHcur≡ 〈B′ · j ′〉, their combination (11),
and the vertical component of the “turbulent” electromotive force,Ez≡ u′rB′ϕ−u′ϕB′r .
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FIGURE 7. Dynamo properties for the linear phase of Run 2a. (a) Kinetic helicityHkin. (b) Current
helicity Hcur. (c) Alpha effect according to Eq. (11). (d) Vertical componentEz of fluctuating EMF.
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FIGURE 8. As in Fig. 7, but for the saturated stage of Run 2a.

2.3.5. Connection to classical MRI

Finally, in Fig. 9 we show iso-surfaces of angular velocityω for both, the early nonlin-
ear and the saturated phase. These surfaces approximately also trace the magnetic field
lines (which are predominantly vertical). The structure of the iso-surfaces is very remi-
niscent of the so-called “channel flow” observed in MRI simulations of accretion discs
[34], but with a “wavy”ϕ-dependence superimposed. This once more exemplifies how
the MRI in accretion discs and Taylor vortices become one and the same phenomenon
in magnetic Taylor–Couette flow.



FIGURE 9. Channel flow in the moderately nonlinear case (left) and the saturated case (right).

3. CONCLUSIONS

We have presented a set of numerical simulations of Taylor–Couette flow with an axial
magnetic field, and see many indications that for not too low Hartmann numbers the
Taylor vortices turn into a manifestation of the MRI.

We have not yet carried out calculations for magnetic Prandtl numbers less than unity,
and it would be very interesting to see whether the different geometries of linear and
nonlinear evolutions can be found for these more “realistic” parameters as well.

In any case the fact that we can have non-axisymmetric linear modes developing into
axisymmetric saturated flows and vice versa should be a clear warning to refrain from
extrapolating linear results
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