INTEGRAL EQUATIONS FOR KINEMATIC DYNAMO MODELS

W. Dobler

Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, Germany¹

K.-H. RÄDLER

Astrophysikalisches Institut Potsdam, Germany²

S u m m a r y: A new technique for the treatment of the kinematic dynamo problem is presented. The method is applicable when the dynamo is surrounded by a medium of finite conductivity and is based on a reformulation of the induction equation and boundary conditions at infinity into an integral equation.

We show that the integral operator \hat{I} involved here is compact in the case of homogeneous conductivity, which is important for both mathematical and numerical treatment. A lower bound for the norm of \hat{I} then yields a necessary condition for the generation of magnetic fields by kinematic dynamos.

Numerical results are presented for some simple $\alpha^2 \omega$ -dynamo models. The far-field asymptotics for stationary and time-dependent field modes is discussed.

K e y words: $\alpha^2 \omega$ -dynamos, kinematic dynamos, Biot-Savart law, far field

1. BIOT-SAVART LAW AND DYNAMO THEORY

Consider a bounded dynamo region surrounded by a medium of non-vanishing electrical conductivity. In the case of steady magnetic fields and constant electrical conductivity in the whole space, $\sigma \equiv \text{const}$, one usually inserts Ohm's law

$$\mathbf{j} = \sigma(\mathbf{E} + \boldsymbol{\mathcal{F}}) , \qquad (1)$$

into Maxwell's equations, which leads to the well-known induction equation

$$\frac{\partial \mathbf{B}}{\partial t} - \Delta \mathbf{B} = C \operatorname{curl}(\mathbf{u} \times \mathbf{B} + \alpha \mathbf{B} - \beta \operatorname{curl} \mathbf{B}) , \qquad \operatorname{div} \mathbf{B} = 0 , \qquad (2)$$

given here in standard non-dimensional form. Alternatively, we can we apply the Biot-Savart law

$$\mathbf{B}(\mathbf{x}) = -\frac{\mu_0}{4\pi} \int \frac{(\mathbf{x} - \mathbf{x}') \times \mathbf{j}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} \, dx'^3 \tag{3}$$

$$= \frac{\mu_0}{4\pi} \int \frac{\operatorname{curl}' \mathbf{j}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} \, dx'^3 \, . \tag{4}$$

to Ohm's law (1). The second form (4) is obtained by means of integration by parts and shows that an arbitrary gradient can be added to or subtracted from $\mathbf{j}(\mathbf{x})$

¹ Address: Max-Planck-Str. 2, D-37191 Katlenb./Lindau (dobler@uni-sw.gwdg.de)

² Address: An der Sternwarte 16, D-14482 Potsdam (khraedler@aip.de)

c) 1998 StudiaGeo s.r.o., Prague

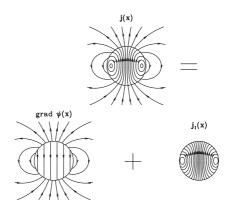


Fig. 1. Illustration of the reduction that leads to Formula (5). The total current field \mathbf{j} is split up into a gradient, grad ψ , and a vector field \mathbf{j}_1 with finite support. Since the gradient does not contribute to the integral (3), the latter is reduced to an integral over the dynamo region \mathcal{D} (the unit sphere) only.

without changing any of the two integrals (3) or (4). This is illustrated in Figure 1 for the case of a simple spherical dynamo model.

Applying (3) to the current field (1) we find that, for $\sigma \equiv \text{const}$, the term $\sigma \mathbf{E}$ does not contribute to the Biot-Savart integral (3) since it can be written as a gradient, $\text{grad}(\sigma \Phi)$. In non-dimensional variables we thus get the integral equation

$$\left(\hat{I}\mathbf{B}\right)(\mathbf{x}) := \int_{\mathcal{D}} \frac{(\mathbf{x} - \mathbf{x}') \times \mathcal{F}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} \, dx'^3 = -\frac{4\pi}{C} \mathbf{B}(\mathbf{x}) \,. \tag{5}$$

The induced electromotive force \mathcal{F} is usually given by mean-field electrodynamics (cf. *Krause and Rädler*, 1980) and we will discuss the linear form

$$\boldsymbol{\mathcal{F}} = \mathbf{u} \times \mathbf{B} + \alpha \mathbf{B} - \beta \operatorname{curl} \mathbf{B} , \qquad (6)$$

with coefficients \mathbf{u} , α (which may be a tensor), β that are given functions of the coordinate vector \mathbf{x} alone. However, (5) holds (as a nonlinear integral equation) also in the nonlinear case.

Together with (6), Equation (5) represents a linear integral-eigenvalue problem. The stationary magnetic field modes $\mathbf{B}(\mathbf{x})$ are given by the eigenfunctions, while the corresponding critical dynamo numbers $C = \mu_0 \sigma UL$ are given by the eigenvalues of the operator \hat{I} . Here U is a velocity characteristic for velocity field $\mathbf{u}(\mathbf{x})$ and α -effect $\alpha(\mathbf{x})$, and L is a characteristic length of the dynamo region. The integral equation (5) was first given by *Roberts (1967, 1994)* for laminar dynamos with $\alpha \equiv 0, \beta \equiv 0$.

Note that the term containing β allows us to apply (5) to cases where physical conductivity is constant only outside the dynamo region \mathcal{D} ; cf. *Dobler and Rädler* (1998a) for details.

Studia geoph. et geod. 42 (1998)

W. Dobler and K.-H. Rädler

We will speak of *homogeneous conductivity* if $\beta(\mathbf{x})\equiv 0$. In that case our integral equation takes the form

$$\int_{\mathcal{D}} \frac{(\mathbf{x} - \mathbf{x}') \times [\mathbf{u}(\mathbf{x}') \times \mathbf{B}(\mathbf{x}') + \alpha(\mathbf{x}')\mathbf{B}(\mathbf{x}')]}{|\mathbf{x} - \mathbf{x}'|^3} dx'^3 = -\frac{4\pi}{C} \mathbf{B}(\mathbf{x})$$
(7)

and the operator \hat{I} from (5) is an integral operator with weak singularity at $\mathbf{x}'=\mathbf{x}$. Therefore, and because the domain of integration is bounded, \hat{I} is bounded and, moreover, compact (cf. Kress, 1989, theorem 2.21). Hence, Riesz' first theorem (theorem 3.1 or particularly 3.11 in the book of Kress) tells us immediately that the spectrum of \hat{I} is countable (i.e. discrete) and has no other point of accumulation than 0 (corresponding to $C=\infty$).

2. NUMERICAL RESULTS

In this section we present some results obtained by discretising Equation (7), which holds for *steady*, *axisymmetric modes* of $\alpha^2 \omega$ -dynamos in the case of *homogeneous conductivity*. In cylindrical coordinates (ϱ, φ, z) and for axisymmetric fields (and axisymmetric induction effects), Equation (5) can be written in the form

$$-\frac{4\pi}{C}B_{\varrho} = -\hat{A}B_{\varphi} \tag{8a}$$

$$-\frac{4\pi}{C}B_{\varphi} = (\hat{A} + \hat{F})B_{\varrho} \qquad + (\hat{D} + \hat{G})B_z \tag{8b}$$

$$-\frac{4\pi}{C}B_z = \hat{E}B_\varphi , \qquad (8c)$$

with certain integral operators \hat{A} , \hat{D} , \hat{E} (representing the α -effect) and \hat{F} , \hat{G} (for differential rotation) that are explicitly given by *Dobler & Rädler (1998a)*.

From the system (8) we can eliminate B_{ϱ} and B_z and get an integral equation in B_{φ} alone,

$$\left[(\hat{D} + \hat{G})\hat{E} - (\hat{A} + \hat{F})\hat{A} \right] B_{\varphi} = \left(\frac{4\pi}{C}\right)^2 B_{\varphi} .$$
⁽⁹⁾

The results given below are obtained by discretising (9) and solving the resulting matrix eigenvalue problem by numerical standard techniques.

2.1 SPHERICAL MODEL

First we considered the spherical α^2 -dynamo model

$$\alpha(\mathbf{x}) = \begin{cases} \alpha_0 \cos \vartheta , & r < R \\ 0 , & r > R \end{cases} ; \qquad \omega \equiv 0 , \qquad (10)$$

where $r = |\mathbf{x}|, \cos \vartheta = z/\sqrt{\varrho^2 + z^2}$.

Studia geoph. et geod. 42 $\left(1998\right)$

Integral Equations for Kinematic Dynamo Models

For surrounding vacuum, Roberts (1972) found the first two modes to be a dipole $(C_{\rm crit} = 7.641)$ and a quadrupole $(C_{\rm crit} = 7.808)$. Our results for homogeneous conductivity are given in Table 1 and show that all eigenmodes appear in dipole-quadrupole pairs of equal critical dynamo number, a phenomenon we will refer to as dipole-quadrupole degeneration.

Table 1. Critical dynamo numbers for the dynamo (10).

Ν	C						
394	6.73345	6.73345	10.5839	10.5839	11.3624	11.3624	

This degeneration is related to *Roberts' (1960)* adjointness theorem and has been proven by *Proctor (1977a, 1977b)*. It appears in a rather broad class of kinematic dynamo systems. In a subsequent paper (*Dobler and Rädler, 1998a*) we use our integral-equation formalism to show, inspired by Proctor's proof, that for homogeneous conductivity

a) if α is antisymmetric with respect to the equatorial plane, any α^2 -dynamo shows dipole-quadrupole degeneration and

b) if, in addition, a velocity-field exists that is mirror-symmetric with respect to the equatorial plane, then with every dipole mode to the velocity field \mathbf{u} there exists a quadrupole mode to the reversed velocity field, $-\mathbf{u}$, and vice versa.

2.2 ELLIPTIC MODELS

Next, we examined an $\alpha^2 \omega$ -dynamo in an oblate spheroid $\varrho^2/a^2 + z^2/b^2 < 1$ for different aspect ratios $a/b \in \{1,3\}$. For $\alpha(\mathbf{x})$ and $\omega(\mathbf{x})$ we chose

$$\alpha(\mathbf{x}) = \begin{cases} \alpha_0 \frac{z}{b} &, \qquad \frac{\varrho^2}{a^2 + z^2} + \frac{z^2}{b^2} < 1\\ 0 &, \qquad \text{otherwise} \end{cases}$$
(11)

$$\omega(\mathbf{x}) = \frac{C_{\omega}}{C_{\alpha}} \frac{\alpha_0}{a^2} \cdot \begin{cases} (\varrho - a) , & \varrho^2/a^2 + z^2/b^2 < 1\\ \text{linear (in } r) \text{ to zero }, & 1 < \varrho^2/a^2 + z^2/b^2 < 4 \\ 0 , & \text{otherwise} \end{cases}$$
(12)

Table 2. Critical dynamo numbers for the α^2 -dynamo (11), (12), $C_{\omega}=0$ with different aspect ratios a/b.

a/b	N	N C_{lpha}						
1	366	9.54674	9.54674	14.3614	14.3614	18.2074	18.2074	
3	344	18.2931	18.2931	25.3462	25.3462	${32.3976}_{\pm 0.34277i}$	${32.3976}_{\pm 0.34277i}$	

Studia geoph. et geod. 42 (1998)

W. Dobler and K.-H. Rädler

For both ellipsoids, two different values of $|C_{\omega}/C_{\alpha}| \in \{0,1\}$ were examined. For $C_{\omega} = 0$, the α^2 -dynamo, we again have dipole-quadrupole degeneration, i. e. dipole and quadrupole modes have equal conditions of excitation, as can be seen in Table 2. Table 3 shows the critical dynamo numbers for $C_{\omega}/C_{\alpha} = \pm 1$. Now, differential rotation breaks dipole-quadrupole degeneration. The generalised degeneration [item b) above], however, makes Table 3 valid for positive as well as negative C_{ω}/C_{α} .

Table 3. Critical dynamo numbers for the $\alpha^2 \omega$ -dynamo (11), (12), $C_{\omega}/C_{\alpha} = \pm 1$. The first mode is a dipole mode (shown in the left half of Figures 2, 3) for sign "+" and a quadrupole mode (right half of Figures 2, 3) for sign "-".

a/b	N		α				
1	366	9.38634	9.73792	14.0924	14.6648	18.1471	18.3397
3	344	17.4321	19.1533	24.3266	26.7715	31.5100	32.6088

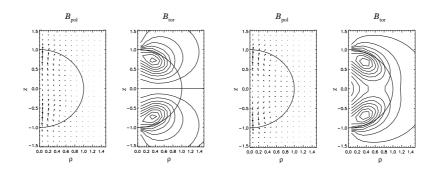


Fig. 2. The first mode for the "ellipsoid" dynamo (11), (12) for a=b=1. Left half: $C_{\omega}/C_{\alpha} = +1$; right half $C_{\omega}/C_{\alpha} = -1$. Both modes correspond to $C_{\alpha} = 9.386$.

The complex dynamo numbers in Tables 2, 3 probably indicate oscillating modes, whereby a conjugate complex pair of eigenvalues represents only *one* field mode. See Section 3 for a discussion of time-dependent modes.

3. TIME DEPENDENT MAGNETIC FIELD

For fields with time-depence of the form $\mathbf{B}(\mathbf{x},t) = \tilde{\mathbf{B}}(\mathbf{x})e^{\gamma t}$ with complex $\gamma \notin \mathbb{R}^-$, one can derive the integral equation (cf. *Dobler and Rädler*, 1998a)

$$\left(\hat{I}^{(\gamma)}\mathbf{B}\right)(\mathbf{x}) = \int \frac{(\mathbf{x}-\mathbf{x}')\times\boldsymbol{\mathcal{F}}}{|\mathbf{x}-\mathbf{x}'|^3} e^{-\sqrt{\gamma}|\mathbf{x}-\mathbf{x}'|} \left(1+\sqrt{\gamma}|\mathbf{x}-\mathbf{x}'|\right) dx'^3 = -\frac{4\pi}{C}\mathbf{B}(\mathbf{x}) , \quad (13)$$

where the complex square root is chosen such that $\operatorname{Re} \sqrt{z} \geq 0 \ \forall z$. For homogeneous conductivity the operator $\hat{I}^{(\gamma)}$ is again compact.

Studia geoph. et geod. 42 $\left(1998\right)$

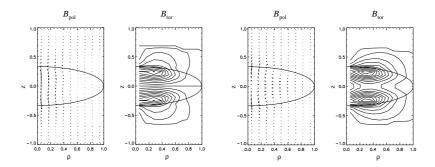


Fig. 3. Same as Figure 2, but for a=1, b=1/3. Both modes correspond to $C_{\alpha} = 9.008$.

The eigenvalues 1/C of (13) are in general complex quantities. If we fix Re γ (say, Re $\gamma = 0$ to investigate the marginal case), C will become real — and thus physically meaningful — only for certain values of $\Omega := \text{Im } \gamma$. In a numerical application of (13) one would thus have to scan for the roots Ω_* of the functions Im $C(\Omega)$ in order to get the oscillation frequencies Ω_* and dynamo numbers $C(\Omega_*)$ of the corresponding magnetic field modes $\mathbf{B}(\mathbf{x})$.

4. A NECESSARY CONDITION FOR MAGNETIC FIELD GENERATION

We already mentioned that the integral operators in Equations (5) and (13) are compact, and thus bounded, for homogeneous conductivity. A concrete upper bound for the norm $\|\hat{I}^{(\gamma)}\|$ is (*Dobler and Rädler 1998a*)

$$\left\|\hat{I}^{(\gamma)}\right\| \le 2\pi L_{\mathcal{D}}\left(\|\mathbf{u}\|_{\infty} + \|\alpha\|_{\infty}\right) . \tag{14}$$

As a corollary we obtain an estimate for the dynamo numbers C of steady (linear or nonlinear) and time dependent (with $\gamma \notin \mathbb{R}^-$) dynamos with homogeneous conductivity:

$$|C| = \mu_0 \sigma L |U| \ge \frac{2L}{L_{\mathcal{D}}} \frac{U}{\|\mathbf{u}\|_{\infty} + \|\alpha\|_{\infty}} .$$

$$(15)$$

This is a *necessary condition* for the excitation of magnetic field by mean-field dynamos with homogeneous conductivity. It has first been derived by *Roberts (1967, 1994)* for the steady case.

In the case of constant electrical conductivity and solenoidal motions, the necessary condition of *Childress (1969)* reads

$$\mu_0 \sigma R \|\mathbf{u}\|_{\infty} \ge \mu_0 \sigma R \frac{|\Delta_{\max} \mathbf{u}|}{2} \ge \frac{\pi}{2} ,$$

where $\Delta_{\max} \mathbf{u}$ is the maximum relative velocity inside the sphere. Our estimate (15) yields the weaker result $|C_{\text{crit}}| = \mu_0 \sigma R ||\mathbf{u}||_{\infty} \ge 1$.

Studia geoph. et geod. 42 (1998)

W. Dobler and K.-H. Rädler: Integral Equations for Kinematic Dynamo Models

5. THE FAR FIELD

One result that can be easily derived from the integral equation (5) is the asymptotic behaviour of the steady field **B** far from the dynamo region:

$$\mathbf{B}(\mathbf{x}) = -\frac{\mu_0 \sigma}{4\pi} \frac{\mathbf{x}}{|\mathbf{x}|^3} \times \int \boldsymbol{\mathcal{F}}(\mathbf{x}') \, dx'^3 + \mathcal{O}(1/r^3) \tag{16}$$

$$= \frac{\mu_0}{4\pi} L |\mathbf{I}_1| \frac{\sin\vartheta}{r^2} \mathbf{e}_{\varphi} + \mathcal{O}(1/r^3) \quad \text{for } r = |\mathbf{x}| \to \infty$$
(17)

(in dimensional form), where (r, ϑ, φ) represent polar coordinates whose z-axis is chosen parallel to the vector $L\mathbf{I}_1 := \sigma \int \mathcal{F}(\mathbf{x}') dx'^3$.

For most cosmic dynamos, $\alpha(\mathbf{x})$ is antisymmetric and $\mathbf{u}(\mathbf{x})$ and $\beta(\mathbf{x})$ are symmetric with respect to the equatorial plane. In that case, we find that the first mode with quadrupole symmetry generally decays slower $(|\mathbf{B}^{\mathcal{S}}(\mathbf{x})| \sim 1/r^2)$ than the first dipole-like mode $(|\mathbf{B}^{\mathcal{A}}(\mathbf{x})| \sim 1/r^3)$ for $r \to \infty$. In this light, the use of the terms "quadrupole-like/dipole-like" for antisymmetric and symmetric fields seems quite questionable when the fields do not allow for multipole expansion.

For time-dependent fields with $\gamma \notin \mathbb{R}^-$, Equation (13) shows that the far field decays exponentially in r.

Manuscript received: 31st January, 1998;

Revisions accepted: 15th May 1998

References

- Childress, S., 1969: Théorie magnétohydrodynamique de l'effet dynamo. Report from Département Méchanique de la Faculté des Sciences, Paris
- Dobler, W. and Rädler, K.-H., 1998a: An integral equation approach to kinematic dynamo models. *Geoph. Astrop. Fluid Dyn.* (submitted)
- Dobler, W. and Rädler, K.-H., 1998b: Dipole-quadrupole degeneration in kinematic dynamo models with homogeneous conductivity. *(in preparation)*
- Krause, F. and R\u00e4dler, K.-H., 1980: Mean-Field Magnetohydrodynamics and Dynamo Theory. Akademie-Verlag/Pergamon Press, Berlin-Oxford
- Kress, R., 1989: Linear Integral Equations. Springer, Heidelberg
- Proctor, M.R.E., 1977a: On the eigenvalues of kinematic α -effect dynamos. Astron. Nachr., **298**, pp. 19-25
- Proctor, M.R.E., 1977b: The role of mean circulation in parity selection by planetary magnetic fields. Geoph. Astrop. Fluid Dyn., 8, pp. 311-324
- Roberts, P.H., 1960: Characteristic value problems posed by differential equations arising in hydrodynamics and hydromagnetics. J. Math. Anal. & Applic., 1, pp. 195-214
- Roberts, P.H., 1967: An Introduction to Magnetohydrodynamics. Longmans, London
- Roberts, P.H., 1972: Kinematic Dynamo Models. Philos. Trans. R. Soc. Lond., A272, pp. 663-703
- Roberts, P.H., 1994: Fundamentals of dynamo theory, In: Lectures on Solar and Planetary Dynamos, Eds. M.R.E. Proctor and A.D. Gilbert, Cambridge University Press, pp. 1-58