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Summary: A new technique for the treatment of the kinematic dynamo problem
is presented. The method is applicable when the dynamo is surrounded by a medium of
finite conductivity and is based on a reformulation of the induction equation and boundary
conditions at infinity into an integral equation.

We show that the integral opemtor:f involved here is compact in the case of homogeneous
conductivity, which is important for both mathematical and numerical treatment. A lower
bound for the norm ofj then yields a mecessary condition for the gemeration of magnetic
fields by kinematic dynamos.

Numerical results are presented for some simple o’w-dynamo models.

The far-field asymptotics for stationary and time-dependent field modes is discussed.
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1. BIOT-SAVART LAW AND DYNAMO THEORY

Consider a bounded dynamo region surrounded by a medium of non-vanishing
electrical conductivity. In the case of steady magnetic fields and constant electrical
conductivity in the whole space, 0 = const, one usually inserts Ohm’s law

j=o(E+F), (1)
into Maxwell’s equations, which leads to the well-known induction equation

B
aa—t—AB:Ccurl(uxB—i—aB—ﬁcurlB) ) divB=0, (2)

given here in standard non-dimensional form. Alternatively, we can we apply the
Biot-Savart law

Ho (X_Xl) Xj (X/) /3
B(x) =0 [ 2 EIANE) 3
(x) A |x—x'|? v (3)
po [ewl' i)
— | —=—Zdx"” . 4
4 |x—x'| . )

to Ohm’s law (1). The second form (4) is obtained by means of integration by
parts and shows that an arbitrary gradient can be added to or subtracted from j(x)
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Integral Equations for Kinematic Dynamo Models

grad Y(x)

Fig. 1. Illustration of the reduction that leads to Formula (5). The total current field j is
split up into a gradient, grad ¥, and a vector field j; with finite support. Since the gradient
does not contribute to the integral (3), the latter is reduced to an integral over the dynamo
region D (the unit sphere) only.

without changing any of the two integrals (3) or (4). This is illustrated in Figure 1
for the case of a simple spherical dynamo model.

Applying (3) to the current field (1) we find that, for o = const, the term oE does
not contribute to the Biot-Savart integral (3) since it can be written as a gradient,
grad(c®). In non-dimensional variables we thus get the integral equation

(fB) (x) := /M o = — 2T B(x) . (5)

|x—x'|3 C

The induced electromotive force JF is usually given by mean-field electrodynamics
(cf. Krause and Rddler, 1980) and we will discuss the linear form

F=uxB+aB - jgcurlB, (6)

with coefficients u, « (which may be a tensor), § that are given functions of the
coordinate vector x alone. However, (5) holds (as a nonlinear integral equation) also
in the nonlinear case.

Together with (6), Equation (5) represents a linear integral-eigenvalue problem.
The stationary magnetic field modes B(x) are given by the eigenfunctions, while the
corresponding critical dynamo numbers C' = pooUL are given by the eigenvalues of
the operator I. Here U is a velocity characteristic for velocity field u(x) and «a-effect
a(x), and L is a characteristic length of the dynamo region. The integral equation
(5) was first given by Roberts (1967, 1994) for laminar dynamos with a=0, §=0.

Note that the term containing 3 allows us to apply (5) to cases where physical
conductivity is constant only outside the dynamo region D; cf. Dobler and Rddler
(1998a) for details.
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We will speak of homogeneous conductivity if §(x)=0. In that case our integral
equation takes the form

/ (X)X ) XBO) + a(x)BE] s AT (™)
‘X—X’|3 C

D

and the operator I from (5) is an integral operator with weak singularity at x'=x.
Therefore, and because the domain of integration is bounded, I is bounded and,
moreover, compact (cf. Kress, 1989, theorem 2.21). Hence, Riesz’ first theorem
(theorem 3.1 or particularly 3.11 in the book of Kress) tells us immediately that the
spectrum of I is countable (i.e. discrete) and has no other point of accumulation
than 0 (corresponding to C'=00).

2. NUMERICAL RESULTS

In this section we present some results obtained by discretising Equation (7),
which holds for steady, azisymmetric modes of a®?w-dynamos in the case of homoge-
neous conductivity. In cylindrical coordinates (g, ¢, z) and for axisymmetric fields
(and axisymmetric induction effects), Equation (5) can be written in the form

47 R

~5B.= —AB, (8a)
4 PN A oA

_g&, — (A+F)B, + (D+G)B. (8b)

—%Bz = EB, , (8c)

with certain integral operators A, D, F (representing the a-effect) and F, G (for
differential rotation) that are explicitely given by Dobler & Rddler (1998a).

From the system (8) we can eliminate B, and B, and get an integral equation in
B, alone,

(D+)B — (A+F)A]B, = (g)ZBw . )

The results given below are obtained by discretising (9) and solving the resulting
matrix eigenvalue problem by numerical standard techniques.

2.1 SPHERICAL MODEL

First we considered the spherical a>-dynamo model

agcost, r<R
a(x):{oo v R ; w=0, (10)

where r=|x|, cos¥ = z/1/0%>+22.
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For surrounding vacuum, Roberts (1972) found the first two modes to be a dipole
(Criy =7.641) and a quadrupole (C.y; =7.808). Our results for homogeneous conduc-
tivity are given in Table 1 and show that all eigenmodes appear in dipole-quadrupole
pairs of equal critical dynamo number, a phenomenon we will refer to as dipole-
quadrupole degeneration.

Table 1. Critical dynamo numbers for the dynamo (10).

N C

394 6.73345 6.73345 10.5839 10.5839 11.3624 11.3624

This degeneration is related to Roberts’ (1960) adjointness theorem and has been
proven by Proctor (1977a, 1977b). Tt appears in a rather broad class of kinematic
dynamo systems. In a subsequent paper (Dobler and Rddler, 1998a) we use our
integral-equation formalism to show, inspired by Proctor’s proof, that for homoge-
neous conductivity
a) if a is antisymmetric with respect to the equatorial plane, any a?-dynamo shows
dipole-quadrupole degeneration and
b) if, in addition, a velocity-field exists that is mirror-symmetric with respect to the
equatorial plane, then with every dipole mode to the velocity field u there exists a
quadrupole mode to the reversed velocity field, —u, and vice versa.

2.2 ELLIPTIC MODELS

Next, we examined an o?w-dynamo in an oblate spheroid ¢?/a® + 22 /b* < 1 for
different aspect ratios a/b€{1,3}. For a(x) and w(x) we chose

alx) = {Oéoz ; o°Ja*+ 22 /b < 1 a1
0, otherwise
(0—a), 0*Ja*+ 22 < 1
w(x) = %:%' linear (in r) to zero , 1< */a®+22/b* < 4 (12)
0, otherwise

Table 2. Critical dynamo numbers for the o*~dynamo (11), (12), C.,=0 with different aspect
ratios a/b.

a/b N C,
1 366 9.54674 9.54674 14.3614 14.3614 18.2074 18.2074
32.3976 32.3976
3 344 18.2931  18.2031 253462  25.3462  3Piond; L SA3900.
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For both ellipsoids, two different values of |C,,/C,| € {0,1} were examined. For
C, =0, the a?-dynamo, we again have dipole-quadrupole degeneration, i.e. dipole
and quadrupole modes have equal conditions of excitation, as can be seen in Table 2.
Table 3 shows the critical dynamo numbers for C,,/C, = +1. Now, differential
rotation breaks dipole-quadrupole degeneration. The generalised degeneration [item
b) above], however, makes Table 3 valid for positive as well as negative C,,/C,.

Table 3. Critical dynamo numbers for the a’w-dynamo (11), (12), C.,/C, = £1. The first
mode is a dipole mode (shown in the left half of Figures 2, 3) for sign “4+” and a quadrupole
mode (right half of Figures 2, 3) for sign “—".

a/b N Ca
1 366 9.38634  9.73792  14.0924  14.6648  18.1471  18.3397
3 344 17.4321 19.1533  24.3266  26.7715  31.5100  32.6088
Bpol Blor Bpol Blor
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Fig. 2. The first mode for the “ellipsoid” dynamo (11), (12) for a=b=1. Left half: C,,/C, =
+1; right half C,,/C., = —1. Both modes correspond to C,, = 9.386.

The complex dynamo numbers in Tables 2, 3 probably indicate oscillating modes,
whereby a conjugate complex pair of eigenvalues represents only one field mode. See
Section 3 for a discussion of time-dependent modes.

3. TIME DEPENDENT MAGNETIC FIELD

For fields with time-depence of the form B(x, ) = B(x)e™ with complex y ¢ R~
one can derive the integral equation (cf. Dobler and Rddler, 1998a)

(j(w)B) (x) = / GoX)XF _ Axx| (1 + WIX—X’\) da’® = —4IB(X) , (13)

|x—x’| C

where the complex square root is chosen such that Re \/2 > 0 Vz. For homogeneous
conductivity the operator I is again compact.
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Fig. 3. Same as Figure 2, but for a=1, b=1/3. Both modes correspond to C,, = 9.008.

The eigenvalues 1/C of (13) are in general complex quantities. If we fix Rey (say,
Re~ = 0 to investigate the marginal case), C' will become real — and thus physically
meaningful — only for certain values of €2 := Im~. In a numerical application of (13)
one would thus have to scan for the roots 2. of the functions Im C'(£2) in order to
get the oscillation frequencies €2, and dynamo numbers C(€2,) of the corresponding
magnetic field modes B(x).

4. A NECESSARY CONDITION FOR MAGNETIC FIELD GENERATION

We already mentioned that the integral operators in Equations (5) and (13) are
compact, and thus bounded, for homogeneous conductivity. A concrete upper bound
for the norm || I™|] is (Dobler and Rddler 1998a)

) < 20 Lo (Juflootllaf o) - (14)

As a corollary we obtain an estimate for the dynamo numbers C' of steady (lin-
ear or nonlinear) and time dependent (with y¢IR™) dynamos with homogeneous

conductivity:
2L U
Cl = poo LU > 22 S (15)
Lo [luflec+le
This is a necessary condition for the excitation of magnetic field by mean-field
dynamos with homogeneous conductivity. It has first been derived by Roberts (1967,
1994) for the steady case.
In the case of constant electrical conductivity and solenoidal motions, the neces-
sary condition of Childress (1969) reads

|Apaxu S

™
Rllul. > oo R -
pooRllul > pooRI=2 > 7

where A, u is the maximum relative velocity inside the sphere. Our estimate (15)
yields the weaker result |Ceii|=poo R||u||o>1.
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5. THE FAR FIELD

One result that can be easily derived from the integral equation (5) is the asymp-
totic behaviour of the steady field B far from the dynamo region:

/‘L g X ! /.
B(x) = —ﬁ@x /f(x)dx3+0(1/r3) (16)
Lo sin ¢
= EL|II| Rl O(1/r®) for r = |x| — o0 (17)

(in dimensional form), where (r,9, ) represent polar coordinates whose z-axis is
chosen parallel to the vector L1, := o [ F(x') dz’®.

For most cosmic dynamos, a(x) is antisymmetric and u(x) and ((x) are sym-
metric with respect to the equatorial plane. In that case, we find that the first
mode with quadrupole symmetry generally decays slower (|B®(x)|~1/r?) than the
first dipole-like mode (|B#(x)|~1/r3) for r—oc. In this light, the use of the terms
“quadrupole-like / dipole-like” for antisymmetric and symmetric fields seems quite
questionable when the fields do not allow for multipole expansion.

For time-dependent fields with v¢IR™, Equation (13) shows that the far field
decays exponentially in r.
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