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Abstract

The paper deals with dynamo models in which the induction effects act within
a bounded region surrounded by an electrically conducting medium at rest. In-
stead of the induction equation, an equivalent integral equation is considered,
which again poses an eigenvalue problem. The eigenfunctions and eigenvalues
represent the magnetic field modes and corresponding dynamo numbers.

In the simplest case, that is for homogeneous conductivity and steady fields,
this integral equation follows immediately from the Biot-Savart law. For this
case, numerical results are presented for some spherical and elliptical axisym-
metric α2ω-dynamo models. For a large class of models the interesting feature of
dipole-quadrupole degeneration is found.

Using Green’s function of a Helmholtz-type equation, we derive a more gen-
eral integral equation, which applies to time-dependent magnetic field modes,
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too, and gives us some insight into the spectral properties of the integral opera-
tors involved. In particular, for homogeneous conductivity the operator is com-
pact and thus bounded, which leads to a necessary condition for dynamo action.

KEY WORDS: α2ω-dynamos, kinematic dynamos, mean-field electrodynamics

1 Introduction

Most cosmic magnetic fields (like those of planets, the Sun and galaxies) are believed
to be generated and maintained against dissipation by dynamo mechanisms. In
many astrophysical objects, turbulent motions play a crucial rôle and consequently
the electromagnetic fields show turbulent features, too. We will therefore adopt the
mean-field concept (see e. g. Krause and Rädler, 1980) that proved to be useful in this
context. The original equations of magnetohydrodynamics can be easily recovered as
a special case, putting to zero the coefficients describing turbulence effects.

The mean-field dynamo problem as we will discuss it here is defined by Maxwell’s
equations (in MHD approximation)

curlE = −∂B
∂t

(1. a)

div B = 0 (1. b)

curlB = µ0j (1. c)

and Ohm’s law
j = σ(E + F) . (2)

The electromotive force F is due to the mean and turbulent motions. We will use the
mean-field relation

F = u×B + αB− β curlB , (3)

but in principle all the equations given below that involve F hold independent of this
particular form. B, E, j and u are magnetic flux density, electric field strength, elec-
tric current density and velocity field of the fluid, all understood as mean quantities.
We assume the fluid to have the magnetic permeability µ0 of vacuum; σ denotes the
electrical conductivity; α the tensor describing the α-effect. The parameter β char-
acterises turbulent dissipation of the magnetic field and is, for sake of simplicity,
supposed to be scalar. We suppose that the induction effects represented by u, α and
β act only within a bounded region D, which we will call dynamo region. Both D and
all infinite space surrounding it are supposed to be electrically conducting, i. e. σ>0
everywhere.

The fields B, E and j are supposed to be square integrable. Note that the square
integrability of B, i. e.

∫
B2 dx3 <∞, implies the absence of currents at infinity. In
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connection with the equation ∆B=0 holding outside the bounded dynamo region
for steady fields and homogeneous conductivity, it also excludes magnetic flux from
infinity. This can be seen from the asymptotics (14) in Section 2.2, that has the
property Br·r2→ 0 for r=|x|→∞. These two physical requirements replace the as-
sumption that B decays like a dipole field, which holds only in the case of a dynamo
surrounded by an insulator.

In this paper, we are interested mostly in the kinematic dynamo problem, where
the coefficients u and α in Equation (3) are given functions of position and the result-
ing problem is linear in B. Actually, most of our discussion remains valid in the more
general case u = u(x;B), α= α(x;B), β = β(x;B), and we will mention the relation
with this case where it seems necessary.

The traditional approach to the dynamo problem is based on the induction equa-
tion, which can be easily derived from Equations (1)–(3). For the case of homoge-
neous conductivity, σ≡const (everywhere), it reads

∂B
∂t

−∆B = C curl(u×B + αB− β curlB) , div B = 0 . (4)

As usual, we have introduced here dimensionless variables based on a unit length
L (typically the extension of the dynamo region D) and a time µ0σL

2 (the diffusion
time). u and α are measured in a unit velocity U (typically the maximum value
of |u| or ‖α‖) and β in U ·L. We have not merged the term curlβ curlB with the
Laplacian on the left hand side; this is useful for our later discussion of the case of
non-homogeneous conductivity. Finally, we have introduced the dynamo number

C = µ0σUL , (5)

which is a dimensionless measure of the strength of the induction effects compared
to Ohmic dissipation.

On this level, the dynamo problem consists in finding solutions B of (4) which
do not decay as t→∞ in the sense that ‖B‖2:=

∫
B2 dx3 > K ∀ t with a fixed lower

bound K > 0. In particular, we will look for solutions of time-dependence ∼ exp(γt).
Then, the induction equation (4) poses an eigenvalue problem for the complex growth
rate γ= γr+iγi, or, if we are interested in solutions with given γr, a two-parameter
eigenvalue problem for C and γi. We call critical dynamo numbers the values of C,
for which there exist such solutions with Re γ=0.

Several methods have been used to solve the dynamo problem at different lev-
els of idealisation, the most common approaches being spectral methods, finite-
difference methods and asymptotic analysis. The majority of the published models
supposes vacuum outside the dynamo region, and their results cannot be directly
compared with ours.
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Finite-difference methods have to cope with non-local boundary conditions at the
outer boundary of the finite volume of calculation (cf. Bräuer and Rädler, 1986, for
the case of vacuum surrounding the dynamo). In order to overcome this difficulty, one
usually inflates the domain of calculation considerably, which increases numerical
cost. When a Cauchy problem is solved instead of an eigenvalue problem, only the
leading mode (or a few leading ones) can be calculated and no understanding of
the overall spectral structure is obtained. There are, however, also finite-difference
models that solve for the whole spectrum of the kinematic dynamo problem.

In this paper, we propose another approach to solve the dynamo problem. Instead
of reducing Equations (1), (2) to a eigenvalue problem for a differential operator we
transform it into an eigenvalue problem for an integral operator, which we then solve
numerically. Such an integral-eigenvalue equation is the continuous analog of a ma-
trix eigenvalue problem. The simplest version of this equation for B(x) is given by
Equation (12) below and holds in the case of homogeneous conductivity and steady
electromagnetic fields. Solving it on the bounded region D has several advantages
compared to the induction equation (4). First, the boundary conditions are automat-
ically fulfilled, due to the very construction of the equation. Moreover, the action of
the whole current system in the conducting medium outside the dynamo region is
contained in (12) in a consistent way, but its explicit treatment is unnecessary: we
can solve for the field B(x) in D alone.

Our assumption that σ be constant in the whole space surrounding the dynamo
region is somewhat opposite to the (mostly vacuum surrounded) traditional dynamo
models. For stellar and galactic dynamos, however, the surrounding space is also
a conductor, and our assumption seems not less realistic than assuming vacuum.
Moreover, vacuum poses some conceptual problems in magnetohydrodynamics be-
cause quasi-stationarity is well fulfilled in all cosmic plasmas, but not in vacuum
(cf. Sokoloff, 1997). One charactersation of quasi-stationary systems is that the elec-
tromagnetic fields propagate at a time scale much shorter than both, the material
advection time τad=L/U , and the diffusion time τdiff=µ0σL

2. But for σ→0, the be-
comes infinitely small. Thus, dynamo models embedded into conducting space have
relevance to both, applications and fundamental aspects of dynamo theory.

In Section 2 we derive the integral equation for the case of steady fields and
obtain the far-field asymptotics for steady dynamos surrounded by a conducting
medium. In Section 3 we present numerical results for some α2ω-dynamo models.
Section 4 is devoted to the mathematical foundation of the integral equation and
its generalisation to the time-dependent case. A necessary condition for self-excited
dynamos with homogeneous conductivity is established and a generalised integral
equation for varying conductivity is given.
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2 The Biot-Savart law and the integral eigenvalue equa-
tion for B

2.1 The integral equation

For a given square integrable current field j, Equations (1.b) and (1.c) determine B
in the following way (cf. for example Jackson, 1980):

B(x) = −µ0

4π

∫ (x−x′)×j(x′)
|x−x′|3 dx′3 (6)

=
µ0

4π

∫ curl′ j(x′)
|x−x′| dx′3 . (7)

Equation (6) is the well-known Biot-Savart law; (7) is obtained by integration by
parts∗ and shows that an arbitrary gradient can be added to or subtracted from j(x)
without changing any of the two integrals (6) or (7). We thus can apply the integral
(6) to the pseudo-current field j1 in order to get the magnetic field caused by the
physical current density j. This is illustrated in Figure 1 for the case of the first
mode of the dynamo model of Krause and Steenbeck (1967); cf. Section 3, Equation
(26) for the specification of this model.

Returning to the dynamo problem (1)–(2), we restrict ourselves to steady fields
and suppose that the electric conductivity is constant, σ=σext>0 everywhere (see the
discussion below). We insert Ohm’s law (2), into the integral (6) and, exploiting the
fact that σE=−σ gradΦ is a gradient (for this step, the homogeneous conductivity
is crucial), we can omit the term containing the electric field E. In dimensionless
variables as mentioned in the Introduction, we thus obtain

(
ÂB

)
(x) :=

∫

D

(x−x′)×F(x′)
|x−x′|3 dx′3 = −4π

C
B(x) (8)

with F given by Equation (3).
Equation (8) was first given by Roberts (1967, 1994) for laminar dynamos with

homogeneous conductivity (α≡ 0, β≡ 0). It is an integral-eigenvalue equation in
B(x); the spectrum of eigenvalues {−4π/C} gives the critical dynamo numbers C,
and the eigenfunctions B(x) represent the corresponding eigenmodes of the magnetic
field.

In the nonlinear case, when u, α or β depend on B, Equation (8) is a nonlinear
integral-eigenvalue problem, which introduces some complications (but not principal
ones) into the mathematical and numerical treatment.

∗Thereby, in addition to (7), a surface integral
∫

∂V

j(x′)
|x−x′|×df ′ occurs. But as the domain of integration

in (6) and (7) is the whole space, V=IR3, this integral vanishes for any square integrable current field.
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Figure 1: Illustration of the reduction that led to Formula (8), using the dynamo model of Krause
and Steenbeck (1967). The total current field j is split up into a gradient, gradψ, and a vector field j1

with finite support. As the gradient does not contribute to the integral (6), the latter is reduced to an
integral over the dynamo region D (the unit sphere) only.

It is very important that the integration in Equation (8) is not over the whole
space, but only over the compact dynamo region

D = {x| α(x) 6= 0 ∨ u(x) 6= 0 ∨ β(x) 6= 0} . (9)

This relieves us of deep mathematical and numerical problems connected with un-
bounded integral operators.

Our assumption that σ≡const can easily be dropped, since any variation in the
conductivity σ can be formally ascribed to the diffusivity β. Let us suppose that σ has
the copnstant value σext> 0 outside D and that electrical conductivity and turbulent
diffusivity within the dynamo region are given by σ̃ and β̃, respectively. Then the
simple transformation

σ := σext (10)

β(x) := β̃(x) +
1
µ0

(
1

σ̃(x)
− 1
σext

)
. (11)

gives us again a formally homogeneous conductivity σ and a diffusivity β(x) with
finite support. Hence, Equation (8) is applicable whenever σ is constant (but 6=0)
outside some bounded region.
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In the case β≡0, the integral equation takes the form
∫

D

(x−x′)×[u(x′)×B(x′) + α(x′)B(x′)]
|x−x′|3 dx′3 = −4π

C
B(x) (12)

and the operator Â from (8) is an integral operator with weak singularity at x′=x
(we have (x−x′)/|x−x′|3 = O(1/|x−x′|2), thus the integral (8) exists in the strict
sense). Therefore, and because the domain of integration is bounded, Â is bounded
and, moreover, compact (cf. Kress, 1989, theorem 2.21). Hence, Riesz’ first theorem
(theorem 3.1 or particularly 3.11 in the book of Kress) tells us immediately that the
spectrum of Â is countable (i. e. discrete) and has no other point of accumulation
than 0 (corresponding to C=∞). Since the integral operator Â is not self-adjoint,
there is no guarantee that the spectrum contains values other than 0. We are of
course interested only in the cases in which eigenvalues other than zero exist and
will discuss only them.

2.2 The far field

One result that can be easily derived from the integral equation (8) is the asymptotic
behaviour of the steady field B far from the dynamo region:

B(x) = −µ0σ

4π
x
|x|3×

∫
F(x′) dx′3 +O(

1
r3

) (13)

=
µ0

4π
L|I1|sin θ

r2
eϕ +O(

1
r3

) for r = |x| → ∞ (14)

(in dimensional form), where (r, θ, ϕ) represent polar coordinates whose z-axis is cho-
sen parallel to the vector LI1 := σ

∫ F(x′) dx′3. This formula is valid not only in the
linear case, but rather for an arbitrary induced electromotive force F of finite sup-
port. Moreover, it applies even to dynamos with varying conductivity σ(x), supposed
that lim

|x|→∞
σ(x)=σ∞>0 exists. In Section 4.2 we will show that for time-dependent

modes the fields decay exponentially with r, i. e. much faster.
When the dynamo region is embedded into vacuum, the external field allows for

multipole expansion and the far-field condition reads that B(x) vanishes far from
the dynamo region like a dipole field (∼ 1/r3); this result could also be obtained from
Equation (14) in the limit σ→0, β·σ fixed. In the case of a conducting cosmos however,
outside the dynamo region there will in general still be a current, driven by the
electric field E whose leading term is an electric dipole field: j∼Edipole∼ 1/r3. This
current leads to a magnetic field B ∼ 1/r2, but as this component of B is merely
azimuthal, it does not contradict the condition that current and magnetic flux must
be localised. Roberts (1967, 1994) mentioned this far-field behaviour already in 1967
and it is not difficult to derive the asymptotics (14) from the discussion of the far-field
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by Meinel (1989) or, for a concrete example, from the results of Krause and Steenbeck
(1967).

For most cosmic dynamos, α(x) is antisymmetric and u(x) and β(x) are symmet-
ric with respect to the equatorial plane (cf. Dobler and Rädler, 1998, for a detailed
discussion). Then the field modes appear as symmetric fields BS or antisymmetric
fields BA. In the first case, F is antisymmetric and I1 will in general be differ-
ent from zero, yielding |BS(x)|∼1/r2 for r→∞. However, in the second case F is
symmetric and I1 vanishes, which implies that |BA(x)|∼1/r3. Thus, ironically, the
first quadrupole-like mode generally decays slower with respect to r than the first
dipole-like mode. In this light, the use of the terms “quadrupole-like / dipole-like” for
antisymmetric and symmetric fields seems quite questionable when the fields do not
allow for multipole expansion.

2.3 The integral equation in cylindrical coordinates

In order to apply the integral equation (8) to concrete dynamo models, we adopt
cylindrical coordinates (%, ϕ, z) and denote the corresponding unit vectors by e%, eϕ,
ez. It would not be difficult to rewrite the following relations in, say, spherical co-
ordinates. We again suppose homogeneous conductivity, σ≡const and β≡0, since
the term β-term in (8) would pose additional difficulties. For the sake of simplic-
ity, we assume the α-effect to be isotropic, αik(x) = α(x)δik with a scalar function
α(x). Furthermore, let u and α be axisymmetric, that is, u%, uϕ, uz and α be inde-
pendent of ϕ. Then, we can restrict ourselves to fields B(x)=B%e%+Bϕeϕ+Bzez with
B%/ϕ/z(x)=B̃%/ϕ/z(%, z) exp(imϕ) and find that the modes to different azimuthal wave
numbers m are not coupled.

Inserting this into the integral-eigenvalue equation (12) and carrying out the
integration over azimuth ϕ′, we get after some algebra

Î B̃ = −4π
C

B̃ (15)

for the column vector

B̃ =




B̃%

B̃ϕ

B̃z


 , (16)

with the integral operator
Î = Îu% + Îuϕ + Îuz + Îα (17)

Îu%B̃ =

∫
dz′ d%′ %′u%(%

′, z′)




−%′Em
s B̃ϕ +(z−z′)Em

c B̃z

−(%Em
1 −%′Em

c )B̃ϕ +(z−z′)Em
s B̃z

−(%Em
c −%′Em

1 )B̃z


 (18. a)
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ÎuϕB̃ =

∫
dz′ d%′ %′uϕ(%′, z′)




%′Em
s B̃% −(z−z′)Em

s B̃z

(%Em
1 −%′Em

c )B̃% +(z−z′)Em
c B̃z

%Em
s B̃z


 (18. b)

Îuz B̃ =

∫
dz′ d%′ %′uz(%

′, z′)




−(z−z′)Em
c B̃% +(z−z′)Em

s B̃ϕ

−(z−z′)Em
s B̃% −(z−z′)Em

c B̃ϕ

(%Em
c −%′Em

1 )B̃% −%Em
s B̃ϕ


 (18. c)

ÎαB̃ =

∫
dz′ d%′ %′α(%′, z′)



−(z−z′)Em

s B̃% −(z−z′)Em
c B̃ϕ −%′Em

s B̃z

(z−z′)Em
c B̃% −(z−z′)Em

s B̃ϕ −(%Em
1 −%′Em

c )B̃z

%Em
s B̃% +(%Em

c −%′Em
1 )B̃ϕ


 . (18. d)

Here B̃%/ϕ/z stands for B̃%/ϕ/z(%′, z′) and Em
1/c/s for Em

1/c/s(%, %
′, z−z′). The functions

Em
1/c/s are integrals over ϕ′ and can be expressed in terms of hypergeometric func-

tions; see Appendix A.1 for details.
For the axisymmetric modes of an α2ω-dynamo (i. e. m=0, u=ω% eϕ) Equation (15)

takes the form

− 4π
C
B% = −ÂBϕ (19. a)

−4π
C
Bϕ = (Â+F̂ )B% + (D̂+Ĝ)Bz (19. b)

−4π
C
Bz = ÊBϕ (19. c)

with the integral operators

(Âψ)(%, z) =
∫
dz′ d%′ %′α(%′, z′)(z−z′)E0

cψ(%′, z′) (20)

(D̂ψ)(%, z) = −
∫
dz′ d%′ %′α(%′, z′)

(
%E0

1−%′E0
c

)
ψ(%′, z′) (21)

(Êψ)(%, z) =
∫
dz′ d%′ %′α(%′, z′)

(
%E0

c−%′E0
1

)
ψ(%′, z′) (22)

(F̂ψ)(%, z) =
∫
dz′ d%′ %′2ω(%′, z′)(%E0

1−%′E0
c )ψ(%′, z′) (23)

(Ĝψ)(%, z) =
∫
dz′ d%′ %′2ω(%′, z′)(z−z′)E0

cψ(%′, z′) (24)

(again the arguments of E0
1/c have been omitted for brevity). Equations (19) reflect

the fact that differential rotation (the operators F̂ , Ĝ) generates only toroidal field
from poloidal one, whereas the α-effect (operators Â, D̂, Ê) can moreover generate
poloidal field from toroidal one.

From the system (19) we can eliminate B% and Bz and get an integral equation
in Bϕ alone,

[
(D̂+Ĝ)Ê − (Â+F̂ )Â

]
Bϕ =

(
4π
C

)2

Bϕ . (25)
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This kind of reduction is possible only form=0. Equation (25) is the integral equation
that we solved numerically in order to get the results shown in Section 3.

3 Numerical results

In this section, we present some results obtained by discretising Equation (25), which
holds for steady, axisymmetric modes of α2ω-dynamos with homogeneous conductiv-
ity. The resulting matrix-eigenvalue problem has been solved numerically by stan-
dard techniques.

Our main purpose is to illustrate the application of our technique to concrete
examples and to motivate an interpretation of some features obtained, like complex
eigenvalues of the integral equation or the degeneration of dipole and quadrupole
modes.

3.1 Spherical models

In order to verify our algorithm, we have applied it to the simple spherical α2-
dynamo model of Krause and Steenbeck (1967), consisting of a sphere of radius R
with constant α-effect:

α(x) =




α0 , |x| < R

0 , |x| > R
ω ≡ 0 . (26)

This model can be treated analytically.
In Table 1, the exact values for the lowest critical dynamo numbers (bottom line)

are compared with numerical values for different grid sizes. The lowest critical dy-
namo number is C =µ0σα0R≈ 3.506, which can be compared to the estimate (46)
given in Section 4.3 that yields C≥1 in this case.

Table 1 shows that a rough picture of the distribution of critical eigenvalues is
already obtained for quite coarse grids. For the finest grid applied here, the four
leading dynamo numbers have a relative error less than 1.5%.

The error does not drop very quickly with grid refinement. Actually, it can be ex-
pected to decay like ∆C =CN−Cexact∼ lnN/N , while computation time (the number
of floating point operations) is dominated by the matrix-eigenvalue algorithm, which
is an N3-process: tcomp∼N3 for the full matrices involved here. The order lnN/N is

†For the nomenclature ‘dipole – quadrupole’, we refer only to the poloidal field here. Since in the
given example α is symmetric with respect to the equatorial plane, the symmetry properties of poloidal
and toroidal fields are opposite, not equal as in the more physical case of antisymmetric α. For a
more rigorous definition of dipole and quadrupole modes in the case of these two kinds of symmetry,
cf. Dobler and Rädler, 1998.
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Table 1: Comparison of numerical values of the first six critical dynamo numbers for different grid
sizes, with the exact result for the Krause-Steenbeck dynamo (26). N is the number of grid points
within the dynamo region (here: within the sphere). The numbers n in brackets in the last line are the
mode numbers: n = 1, 3, 5, . . . gives modes of dipole† symmetry, n = 2, 4, 6, . . . modes of quadrupole†

symmetry.

N C

26 3.6444 5.4534 7.2260 7.5984 9.1976 10.3506

40 3.6088 5.3003 6.9385 7.1936 8.7081 9.4937

120 3.5374 5.1078 6.5133 6.7236 7.9723 8.5865

196 3.5535 5.0863 6.4838 6.6915 7.8232 8.4360

394 3.5286 5.0348 6.3980 6.5933 7.7234 8.2577

Theory: 3.5059(1) 4.9819(2) 6.3090(3) 6.5024(1) 7.5651(4) 8.0838(2)

due to the very unsophisticated discretisation we adopted, simply replacing the in-
tegrals (20–24) over a cell i := [%i−δ%/2, %i+δ%/2]×[zi−δz/2, zi+δz/2] by the value at
(%i, zi), multiplied by δ% δz. According to the weak singularity in (8), one has to han-
dle the case (%, z)=(%i, zi), (%′, z′)∈ i separately. The simplest procedure is to drop
this contribution, which introduces an error of order

∫

i

d%′dz′
[
%iE

0
1(%i, %

′, zi−z′)− %′E0
c (%i, %

′, zi−z′)
]
∼ δ% δz ln δ% ∼ 1

N
lnN (27)

due to D̂; the operators Ê, F̂ give terms of the same order, while the integrands in Â
and Ĝ are not singular at all.

We used this simple scheme because it is also the most flexible one and does
not require any special treatment of points near the surface of the dynamo region.
Much more effective schemes could be implemented using higher order integration
formulae, but then the points close to the boundary need special treatment (as they
do in higher-order finite-difference schemes).

This numerical cost of our technique is difficult to compare with finite difference
schemes where only sparse matrices are involved. Firstly, the latter are often used
to solve the dynamo Cauchy problem which can yield only the dynamo number and
growth rate of the fastest growing mode, but never give an overview over the whole
spectrum of eigenmodes and dynamo numbers. Secondly, the cost of embedding the
dynamo region into a much larger volume is difficult to estimate in a general way.
Finite-difference methods will be more efficient when only the leading field mode is
of interest, but high accuracy is needed, since they deal with sparse matrices only,
where our method involves full matrices. On the other hand, our method probably
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has a lead for not too high accuracy required.

The next dynamo model we examined is more physical than that of Krause and
Steenbeck in assuming the α-effect to be antisymmetric with respect to the equato-
rial plane:

α(x) =




α0 cos θ , r < R

0 , r > R
ω ≡ 0 , (28)

where α0 is constant and cos θ = z/
√
%2+z2 denotes the cosine of the polar distance

angle.
For surrounding vacuum, Roberts (1972) found the first two modes to be a dipole

(Ccrit = 7.641) and a quadrupole (Ccrit = 7.808) one. Our results for homogeneous
conductivity differ by about 10 % from this and are shown in Table 2. Here the
first two, identical, dynamo numbers correspond to one dipole and one quadrupole
mode, which are shown in Figure 2. More generally, all eigenmodes appear in dipole-
quadrupole pairs of equal critical dynamo number, a phenomenon we will refer to as
dipole-quadrupole degeneration.

Table 2: Critical dynamo numbers for the dynamo (28), showing dipole-quadrupole degeneration.
N C

394 6.73345 6.73345 10.5839 10.5839 11.3624 11.3624

Bpol Btor

ρ ρ

z z

Bpol Btor

ρ ρ

z z

Figure 2: First dipole (left) and quadrupole mode (right) of the dynamo (28). Both modes correspond
to a critical dynamo number C = 6.733.

This degeneration is related to Roberts’ (1960) adjointness theorem and has been
proven by Proctor (1977b, 1977c). It is not restricted to the special dynamo model
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(28), but rather appears in a broad class of kinematic dynamo systems with homo-
geneous conductivity. This topic will be discussed in a subsequent paper (Dobler
and Rädler, 1998). It should be noted that, with our numerical procedure, dipole-
quadrupole degeneration is found already for arbitrarily coarse grids, which is due
to the close relation of dipole-quadrupole degeneration to the integral equation (12).

3.2 Elliptical models

We have examined an α2ω-dynamo in an “oblate” spheroid

%2

a2
+
z2

b2
< 1 (29)

for the two different aspect ratios a/b∈{1, 3} (the first one actually representing a
sphere).

For α(x) and ω(x) we chose

α(x) =




α0
z

b
,

%2

a2
+
z2

b2
< 1

0 , otherwise
(30)

ω(x) =
Cω

Cα

α0

a2
·





(%− a) ,
%2

a2
+
z2

b2
< 1

linear (in r) to zero , 1 <
%2

a2
+
z2

b2
< 4

0 , otherwise

(31)

where the coefficients are chosen such that

Cα = µ0σ|αmax|a = µ0σα0a , |Cω| = µ0σ

∣∣∣∣
∂ω

∂%

∣∣∣∣
max

a3 . (32)

The interpolation of ω from the value on the surface of the ellipsoid to value zero
on the surface of an embedding ellipsoid [second line in Equation (31)] was applied
in order to avoid discontinuities in ω(x) at the surface of the (inner) ellipsoid — a
problem that never arises when the dynamo is surrounded by vacuum. There are,
however, no really good reasons to proceed like this as long as α(x) is still allowed to
be discontinuous, because α and ω enter the induction equation (4) at the same level
of differentiation. Thus, a discontinuity in ω should not be more problematic than
one in α, which is inherent to many dynamo models.

For both of the ellipsoids, three different ratios Cω/Cα ∈ {0,±1} were exam-
ined. For Cω = 0, the α2-dynamo, we again have dipole-quadrupole degeneration,
i. e. dipole and quadrupole modes have equal conditions of excitation, as can be seen
in Table 3.
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Table 3: Critical dynamo numbers for the α2-dynamo (30), Cω =0 with different aspect ratios a/b.
a
b N Cα

1 366 9.54674 9.54674 14.3614 14.3614 18.2074 18.2074

3 344 18.2931 18.2931 25.3462 25.3462 32.3976
±0.34277i

32.3976
±0.34277i

Table 4 shows the critical dynamo numbers for Cω/Cα = ±1. Now, differen-
tial rotation breaks dipole-quadrupole degeneration. However, we find that chang-
nig the sign of Cω does not change the critical dynamo numbers, only the dipole
and quadrupole modes exchange their rôles. We will call this generalised dipole-
quadrupole degeneration and again refer to Dobler and Rädler (1998) for a detailed
discussion.

Generalised dipole-quadrupole degeneration makes Table 4 valid for positive as
well as negative sign of Cω/Cα. For Cω =+Cα, the leading mode is of dipole type, for
Cω =−Cα it is of quadrupole type; both of them are shown in Figures 3 and 4.

Table 4: Critical dynamo numbers for the α2ω-dynamo (30), (31), Cω/Cα = ±1 (i. e. ω = ±(%−a)) with
different aspect ratios a/b.

a
b N Cα

1 366 9.38634 9.73792 14.0924 14.6648 18.1471 18.3397

3 344 17.4321 19.1533 24.3266 26.7715 31.5100 32.6088

Bpol Btor

ρ ρ

z z

Bpol Btor

ρ ρ

z z

Figure 3: The first mode for the “ellipsoid” dynamo (30), (31) for a=b=1. Left half: Cω/Cα = +1; right
half Cω/Cα = −1. Both modes have a critical dynamo number Cα = 9.386.

The complex dynamo numbers in Table 3 are not physically meaningful and
hence do not represent stationary field modes. However, it will become clear in
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Bpol Btor

ρ ρ

z z

Bpol Btor

ρ ρ

z z

Figure 4: Same as Figure 3, but for a=1, b=1/3; Cα = 17.432.

Section 4.2 that oscillating modes would appear with complex C in the kind of cal-
culations carried our here. Thus, some of the complex dynamo numbers, but not
necessarily all of them, represent the oscillating modes of the system. In any case,
the ordering in Table 3 is arbitrary as for the complex dynamo numbers, and only
the procedure outlined in Section 4.2 will clarify their position.

Similar to what we found for spherical dynamos, one could hope that for
flat spheroids (a/bÀ1) our results for homogeneous conductivity were in rough,
qualitative agreement with calculations for thin-disc dynamos surrounded by vac-
uum. However, even for an aspect ratio a/b= 8 (a model not further detailed
here), we found considerable differences to results from classical thin-disc theory
(cf. Ruzmaikin et al, 1988). There is even a strict argument showing that we can
not expect to reproduce the strongly asymmetric behaviour found for the thin disc
in vacuum (first quadrupole mode for D := CαCω·b3/a3 ' −12.56, first [“forgotten”]
dipole mode for D'69.10, cf. Soward, 1992). This is because the asymmetry is incom-
patible with generalised dipole-quadrupole degeneration and may therefore appear
only for non-homogeneous conductivity. In other words, the qualitative features of
disc dynamo models depend crucially on the conductivity outside the dynamo region
— a parameter that is not always well known in astrophysical applications.

4 Generalisations and mathematical foundation

4.1 Discrete and continuous spectra

In contrast to a matrix, a linear operator on a functional space can possess an un-
countable spectrum, in particular the spectrum can consist of a continuous and a dis-
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crete part. For the hermitian operators from quantum mechanics we know that the
discrete spectrum is connected with localised eigenfunctions (“bound states”), while
the generalised eigenfunctions, corresponding to points of the continuous spectrum,
are not square integrable (“free states”) and thus are no elements of the Hilbert space
involved.

In the case of a finite dynamo system surrounded by vacuum, there exists only
a discrete spectrum of field modes, mainly because outside the dynamo region the
magnetic field is a potential field and therefore can be represented in the discrete
base of multipole fields.

On the other hand, the spectrum of a bounded dynamo system embedded into
conducting space will in general have both, discrete and continuous parts. The con-
tinuous spectrum is related to decaying modes which are well-known to form a con-
tinuum in the case of free decay (F ≡ 0), while the discrete spectrum represents real
dynamo action.

Meinel (1989) motivated that one can expect a similar behaviour as found in
quantum mechanics for the (non-hermitian) differential operator D̂ from the induc-
tion equation (4)

D̂B := curl(αB + u×B− β curlB) , (33)

i. e. probably localised magnetic modes correspond to discrete eigenvalues (growth
rates) γ, while the continuous spectrum is caused by non-localised modes. Whenever
we use in the following sections cautious formulations like “we can expect” or “the
continuum should be on the negative half axis”, we argue on the base of this analogy
and the corresponding results are not mathematically strict but only strongly moti-
vated; this is in contrast to the strict results on boundedness and compactness for
the integral operators in Equations (12) and (40) below.

As we will see in this section, the derivation of our integral equation (8) or (40)
implies that the magnetic field modes B(x) are localised. This means that in the
integral-equation formalism non-localised fields and, if the analogy to quantum me-
chanics holds, the continuous spectrum are discarded from the very start (but only
for growth rates γ that are not real negative, see below). As Meinel shows, these
modes always decay with time and are thus of minor interest in dynamo theory.
It is only by excluding these non-localised modes, that some severe problems con-
nected with the differential operator from the induction equation are overcome, and
an integral-equation description of the dynamo problem is possible.

4.2 Time dependent magnetic field

The most general integral equation for the time-dependent case (but assuming con-
stant conductivity outside the dynamo region) is obtained by transforming the in-
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duction equation (4) into the integral equation

B(x, t) =
∫

IR3

dx′3 G(x−x′, t)B0(x′)

−
t∫

0

dt′
∫

D
dx′3 grad′G(x−x′, t−t′)×F(x′, t′) . (34)

Equation (34) is a variant of an equation that can be found in an article by Rädler
(1968) or the book of Krause and Rädler (1980). Here,

G(x−x′, t) =
1

(4πηt)3/2
e
− (x−x′)2

4ηt (35)

denotes Green’s function of the heat-conduction operator on the left of Equation (4)
and B0(x) := B(x, t=0) is the initial field. η=1/(µ0σ) denotes the magnetic diffusivity
and like in Section 2.1, variations in σ(x) are transmuted into β(x). Although im-
portant as an analytical tool, Equation (34) is too general for numerical applications
and we will now turn to a more particular formulation.

If we introduce the ansatz

B(x, t) = B̃(x)eγt, γ complex , (36)

into the induction equation (4) and omit the tilde, we get

1
C

(∆B− γB) = − curlF , div B = 0 , (37)

with F given by (3). For C fixed, Equation (37) is an eigenvalue problem with eigen-
values γ. Formally, we can as well fix γ and get a generalised eigenvalue problem
with eigenvalues 1/C which will in general be complex. In analogy to the case of gen-
eral time dependence, we can use Green’s function G(x, xv′) of the Helmholtz-type
operator in Equation (37) to transform (37) into an integral equation:

B(x) = −C
∫

D
G(x,x′) curl′F dx′3 = C

∫

D
grad′G(x,x′)×F dx′3 . (38)

For the boundary condition of square integrability, Green’s function G(x,x′) is
well known (cf. Morse and Feshbach, 1953),

G(x,x′) = G(x−x′) = − 1
4π

e−
√

γ|x−x′|

|x−x′| , (39)

where the root √γ of a complex number is chosen such that Re
√
γ≥ 0. Note that G

is only unique (and compatible with the condition of square integrability) if γ is not
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on the negative real axis, γ /∈IR−, and we will restrict ourselves to that case here and
in the following. Inserting (39) into Equation (38), we get

(
Â

(γ)
B

)
(x) =

∫

D

(x−x′)×F
|x−x′|3 e−

√
γ|x−x′| (1 +

√
γ|x−x′|) dx′3 = −4π

C
B(x) . (40)

Like in Section 2.1 it is easily shown that the operator on the left hand side of (40) is
compact in the case of homogeneous conductivity (and thus bounded) for γ /∈ IR−.

For a given value of γ, Equation (40) is again an integral-eigenvalue equation for
B(x) with eigenvalues −4π/C. In order to get numerically the modes with a given
growth rate Re γ and the corresponding dynamo numbers (e. g. Re γ=0 and C=Ccrit)
one has to solve Equation (40) numerically for different values of Ω:=Im γ, which
yields complex functions C(Ω) that are continuous because they are eigenvalues of
an integral operator that depends smoothly on γ (and so does the matrix obtained
by simple discretisation). One has to find the zeros of the imaginary part of these
functions, ImC(Ω)=! 0, because only real dynamo numbers are physically meaningful.
The corresponding value of Ω is then the oscillation frequency of the time dependent
mode.

For γ 6=0, γ /∈IR−, we have Re
√
γ>0, and B(x) decays for r:=|x|→∞ exponentially

according to

B(x) = −µ0σ

4π
e
−
√

γ
η

r
√
γ

η

(
1
r

+O(
1
r2

)
)

x
r
×LI1 (41)

with LI1=σ
∫ F(x′) dx′3.

In an infinite conductor, the equation η∆B−γB=0 for the free decay of magnetic
field has a continuous spectrum γ=−ηk2, k∈IR3 and the corresponding eigenfunc-
tions B ∼ jl(kr)·Y m

l (ϑ, ϕ) — with jl denoting spherical Bessel functions — tend to
zero for r→∞ (at least they can be chosen so), but are not localised. We can expect
the dynamo equation (4) to have such a continuum, too, and since only for real and
negative γ modes with B→0 for r→0 may be non-localised, the continuum should
still be on the negative half axis.

4.3 A necessary condition for magnetic field generation

We already mentioned that the integral operators in Equations (8) and (40) are
bounded for β≡0. It is not difficult to derive a concrete upper bound for the norm
‖Â(γ)‖. Let ‖u‖∞= max

x∈D
|u(x)| and ‖α‖∞= max

x∈D
‖α(x)‖2 (where ‖α‖2 is the spectral

norm, or any other matrix norm that is compatible with the Euclidean vector norm)
denote the maximum norms of the vector function u(x) and the tensor function α(x);
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let LD the diameter of the smallest sphere enclosing the dynamo region D. Noting
that 0 < e−

√
γ|x|

(
1+
√
γ|x|

)
≤ 1 ∀x, we find for an arbitrary bounded vector function

b in the dimensionless units from (4) and (8):
∣∣∣∣(Â

(γ)
b)(x)

∣∣∣∣ ≤
∫

D

∣∣∣∣
(x−x′)
|x−x′|3

∣∣∣∣ ·
∣∣∣u(x′)×b(x′) + α(x′)b(x′)

∣∣∣ dx′3 (42)

≤
∫

D

dx′3

|x−x′|2 · (‖u‖∞+‖α‖∞) · ‖b‖∞ (43)

≤ 2πLD · (‖u‖∞+‖α‖∞) · ‖b‖∞ . (44)

In other words, Â
(γ)

is bounded, if D is and α and u are, and then

‖Â(γ)‖ ≤ 2πLD
(
‖u‖∞+‖α‖∞

)
. (45)

It is essential here that our operator acts on functions on a bounded region D, be-
cause on unbounded regions the maximum modulus max

x
|f(x)| of a function f(x) is

not a norm of f .
The same argumentation as above is valid in the case of α-quenching, provided

that the norms of u and α are now defined by ‖u‖∞ = max
x,B

|u(x;B)|, ‖α‖∞ =

max
x,B

‖α(x;B)‖2 and are finite.

As the eigenvalues of a linear operator are bounded by the operator norm
(cf. Kress, 1989), we derive from the upper bound (45) as a corollary an estimate
for the dynamo numbers of steady (linear or nonlinear) and time dependent (with
γ /∈IR−) dynamos with homogeneous conductivity (σ≡const):

µ0 σLD
(
‖u‖∞+‖α‖∞

)
≥ 2 . (46)

This is a necessary condition for the excitation of magnetic field by mean-field dy-
namos with homogeneous conductivity. It has first been derived by Roberts (1967,
1994) for the steady case.

Other necessary conditions have been given by Backus (1958) and Childress
(1969). The condition of Childress (1969) is similar to ours in that it gives an es-
timate for the magnitude of the velocity field itself. For a spherical dynamo with
constant electrical conductivity and solenoidal motions, it reads

µ0σR‖u‖∞ ≥ µ0σR
|∆maxu|

2
≥ π

2
, (47)

where ∆maxu is the maximum relative velocity inside the sphere. For a sphere, our
estimate (46) yields the weaker result |Ccrit|=µ0σR‖u‖∞≥1.
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For a cylinder of height 2h and radius R, the “geometric integral” in (43) can also
be given explicitely and we get

µ0 σh
(
‖u‖∞+‖α‖∞

)
≥ 1

ln
R

h
+1+

h

2R

; (48)

for a thin disc, the term h/(2R) can be neglected.
As (46) holds for time dependence ∼ exp(γt) with γ /∈IR−, we can conclude directly

that for dynamo numbers C below this lower bound only decay of the magnetic field
modes is possible and that this decay occurs with γ∈IR−, i. e. non-oscillatory, as oth-
erwise a contradiction to the condition (46) would occur. Nothing similar can be
said when the dynamo number is above the bound (46), but below the lowest critical
value.

4.4 Variable conductivity

When the function β(x) is different from zero on a positive volume, the integral
operator Â from Equation (8) is no longer compact. This is not very surprising, since
we apply the integral operator “ curl−1 ” =

∫
grad′ 1

|x−x′|× · dx′3 to curl′B and it is well
konwn that the identity operator is bounded, but not compact (cf. Kress, 1989). More
insight can be gained by eliminating the differentiation of B, integrating (8) by parts
according to

∫

V
a× curl′ b dx′3 = −

∫

∂V
a×[b×df ′] +

∫

V
(b div′ a− ^b∇

′a) dx′3 , (49)

with ( ^b∇
′a)i := bj∂

′
iaj , and using the well-known formula from potential theory

div′
x−x′

|x−x′|3 = −4πδ(x−x′) . (50)

We thus get the following integral equation in non-dimensional form
∫ {

(x−x′)×[αB + u×B + grad′ β×B]
|x−x′|3

+ β(x′)
(

B
|x−x′|3 − 3

(B·(|x−x′|))
|x−x′|5 (|x−x′|)

)}
dx′3

+ 4πβ(x)B(x) = −4π
C

B(x) . (51)

Note that the term grad′ β×B does not represent turbulent diamagnetism, since the
latter is included in u×B from the very start.

This is again a kind of eigenvalue equation for B(x) on D with eigenvalues
−4π/C. There are, however, two facts that make its mathematical and numeri-
cal treatment much more complicated than that of Equation (8). First, the term
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Â
III

B := 4πβ(x)·B(x), like the identity operator on function spaces, is bounded, but
not compact (cf. Kress, 1989, theorem 2.19). Hence, Equation (51) is no longer an
eigenvalue problem for a compact operator and, deprived of the power of Riesz the-
ory, we no longer can exclude the existence of a continuous spectrum. Second, the
kernel of the second integral operator Â

II

(Â
II
B)(x) :=

∫
β(x′)

(
B(x′)
|x−x′|3 − 3

(B(x′)·(x−x′))
|x−x′|5 (x−x′)

)
dx′3 (52)

is singular (not only weakly singular as above) and the integral exists only as a prin-
cipal value. Â

II
is even unbounded on spaces of continuous functions, but bounded

on Hölder spaces. In any case it is not a compact operator.
Probably, an integral equation involving a Green’s function for the given conduc-

tivity distribution would again give us a compact operator. But even for the simple
case of a sphere of constant conductivity in vacuum, there seems to be no closed ana-
lytical expression for the corresponding Green’s function and it can only be given by
an infinite series in special functions (cf. Bräuer and Rädler, 1987).

Of course, these questions should be investigated in more detail. It may be pos-
sible to overcome the difficulties, but the numerical solution of (51) can prove to be
much less straightforward than in the case of homogeneous conductivity.
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Appendix

A.1 The integrals Em
1/c/s

In Section 2.3 we introduced three symbols Em
1 , Em

c , Em
s , that are defined as follows:

Em
1 = Em

1 (%, %′, z−z′) = 2
π∫

0

cosmϕ′

[%2 + %′2 − 2%%′ cosϕ′ + (z−z′)2]3/2
dϕ′ (53)

Em
c = Em

c (%, %′, z−z′) = 2
π∫

0

cosϕ′ cosmϕ′

[%2 + %′2 − 2%%′ cosϕ′ + (z−z′)2]3/2
dϕ′ (54)

Em
s = Em

s (%, %′, z−z′) = 2i
π∫

0

sinϕ′ sinmϕ′

[%2 + %′2 − 2%%′ cosϕ′ + (z−z′)2]3/2
dϕ′ . (55)

These integrals can be expressed in terms of complete elliptic integrals, but as far as
we see, this results in no general expressions that apply to arbitrary m.

Alternatively, we can express the integrals in terms of hypergeometric functions.
Formula 30 in §5 of Oberhettinger’s (1957) table of Fourier transforms, in connection
with a limiting procedure and some standard multiplication theorems for trigono-
metric functions, can be used to obtain the representation

E0
1(%, %′, ζ) =

v0
2 2F1(−1

2 ,−1
2 ; 1; e−2a) (56)

E0
c (%, %′, ζ) =

3
4
v0e

−a
2F1(−1

2 ,
1
2 ; 2; e−2a) (57)

E0
s (%, %′, ζ) = 0 , (58)

and, for m>0,

Em
1 (%, %′, ζ) = vm(m+ 1

2) 2F1(−1
2 ,m− 1

2 ;m+1; e−2a) (59)

Em
c (%, %′, ζ) =

vm

2

[
mea 2F1(−1

2 ,m− 3
2 ;m; e−2a) +
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+
(m+ 1

2)(m+ 3
2)

m+ 1
e−a

2F1(−1
2 ,m+ 1

2 ;m+2; e−2a)
]

(60)

Em
s (%, %′, ζ) = i

vm

2

[
mea 2F1(−1

2 ,m− 3
2 ;m; e−2a)−

−(m+ 1
2)(m+ 3

2)
m+ 1

e−a
2F1(−1

2 ,m+ 1
2 ;m+2; e−2a)

]
. (61)

Here the abbreviations

a = arcosh
%2+%′2+ζ2

2%%′
= arcsin

√
(%2−%′2)2 + 2(%2+%′2)ζ2 + ζ4

2%%′
(62)

vm =
πe−a(m− 1

2
)

(%%′)3/2 sinh2 a
· (2m)!
22m(m!)2

=
√
πe−a(m− 1

2
)

(%%′)3/2 sinh2 a
· (m−

1
2)!

m!
(63)

are used, and

2F1(a, b; c;x) :=
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
=

Γ(c)
Γ(a)Γ(b)

∞∑

n=0

Γ(a+n)Γ(b+n)
Γ(c+n)

xn

n!
(64)

denotes Gauss’ hypergeometric function (cf. Abramowitz and Stegun, 1980).


