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Abstract

The paper discusses the properties of dynamo models with discontin-

uous distribution of the induction coefficients, showing that no addi-

tional source terms appear due to the discontinuities.

The apparent contradiction between Parker’s (1971) result for his

αω-dynamo model and later results, which gave rise to the introduc-

tion of additional terms by Ruzmaikin et al (1979), is shown to be due

to misinterpretation. Parker’s fields agree well with both, the exact so-

lution and numerical results obtained with a finite-difference scheme.

It is shown that the αω-approximation is justified even for a discon-

tinuous α-coefficient, provided that the magnetic Reynolds numbers

Rω and Rα are large and small enough, respectively.

1 Introduction

One of the difficulties connected with kinematic dynamo theory lies in the
fact that the number of analytically solvable dynamo models retaining the
basic physical properties of real dynamos is quite low. Such models would,
for example, provide a natural link between numerical solutions that are
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easily accessible only in some vicinity of the threshold of generation, and
asymptotic results valid for large magnetic Reynolds numbers.

Spherical models are solvable in closed form if the α-effect is constant
(Krause & Steenbeck, 1967) or a function of radius only, e. g. piecewise con-
stant. This contradicts the antisymmetry of α(x) with respect to the equa-
torial plane that is essential for most cosmic dynamo objects (cf. Krause &
Rädler, 1980).

Moffatt (1978) suggested an exactly solvable slab model consisting of
two planes with vertically concentrated α-effect, namely

α(z) = δ(z+ζ)− δ(z−ζ) . (1)

This profile has the right symmetry and some resemblance to galactic disc
dynamos, but the strong concentration of one of the induction effects seems
unphysical. Nevertheless, this kind of model has proven to be useful for
discussing interesting physical effects in analytical studies (see for exam-
ple Gabov et al, 1996). One of the main advantages of the model is that it
is analytically solvable even as a full α2ω-dynamo model and the solution
is quite compact (cf. Ruzmaikin et al, 1980b).

The third type of analytically solvable dynamo models consists of slab
models with an α-effect that is a piecewise constant function of the vertical
coordinate z only. Typically, α is assumed constant in the upper and lower
part of the disc, respectively, but changes sign at the equatorial plane,

α(z) = α0 sgn z for |z|<h . (2)

Such a model of an αω-dynamo was presented in a classical article by
Parker (1971) and is clearly closer to physical reality that Moffatt’s model.
The corresponding α2-model can also be solved and has been discussed by
Ruzmaikin et al (1980b) and Rädler & Bräuer (1987). Meinel (1990) solved
the non-axisymmetric problem for a finite α2-cylinder, but had to suppose
a perfectly conducting medium outside the disc.

Ruzmaikin et al (1979, 1988) apparently found Parker’s results in qual-
itative disagreement with both, numerical results for similar distributions
of the induction effects and some general relations for thin-disc dynamos.
To resolve this contradiction, they introduced into the thin-disc dynamo
equation an additional source term proportional to the step in α. Recently,
Sokoloff (1997) gave the general form of this additional term for arbitrary
surfaces of discontinuity.
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This additional source term was introduced as the expression of prin-
cipial changes in physics, appearing due to the discontinuity of α(x) at the
midplane z=0. According to the argumentation of Ruzmaikin et al (1979),
even models with continuous approximations to the step function,

α(z) = sgnε(z) −→ε→0
sgn(z) (3)

would yield results that are principally different from the discontinuous
case. Such behaviour would be very disturbing as it contradicts our phys-
ical intuition fed by a lot of examples where comparable approximations
work successfully. It is the aim of the present paper to return sound sleep
to researchers by showing that discontinuous distributions of the induc-
tion effects do not introduce any new physics or additional terms, and that
dealing with them, one needs not be afraid of unexpected effects.

The argument that α-profiles with structures smaller than the turbu-
lent correlation length lturb are unphysical (Ruzmaikin et al, 1980a, 1980b)
is a bit too conservative. Averaging over azimuth ϕ (cf. Braginskij, 1964a,
1964b, 1964c; Krause & Rädler, 1980) can of course lead to arbitrarily sharp
distributions of α, and so can ensemble averaging in systems where the er-
godic hypothesis (concerning space averages) is inapplicable. Apart from
this, after the averaging procedure has been carried out, the remaining
equations no longer contain any information about the scale lturb and may
be examined in their own right.

We will show that the results of Parker are in good agreement with simi-
lar models like the ones presented by Ruzmaikin et al (1988) and have been
misinterpreted by Ruzmaikin et al (1979, 1988), which was facilitated by
unlucky presentation. Thus, among the analytically solvable dynamo mod-
els, Parker’s model is probably one of the most physical ones and provides
a good tool in cases where exact solutions are needed for disc dynamos.

2 The thin disc

Let us regard the induction equation for a thin disc of half-thickness h, with
an antisymmetric α-effect that is discontinuous at the equatorial plane z=

0:
α =

[[α]]

2
sgn z for |z|¿h , (4)
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where the brackets [[ψ]](x, y) := ψ(x, y,+0) − ψ(x, y,−0) denote the jump of
the quantity ψ at the equatorial plane.

In cylindrical coordinates (r, ϕ, z), the equation for the radial component
Br and the azimuthal component Bϕ of the magnetic field in a thin disc are

∂Br

∂t
= −(αBϕ)′ + (βB′

r)
′ (5)

∂Bϕ

∂t
= (αBr)

′ +GBr + (βB′
ϕ)′ . (6)

Here, primes denote differentiation with respect to the vertical coordinate
z. The assumption has been made that the magnetic field is axisymmet-
ric and its radial scale is excessively larger that the disc thickness 2h. The
coefficient α represents the α-effect, G := r ∂ω/∂r the shear strength and
β is the turbulent diffusion coefficient. Note that, strictly speaking, varia-
tions in β will introduce an additional vertical advection term 1/2 (β′Br/ϕ)′

in (5), (6) due to “turbulent diamagnetism” (cf. Rädler, 1968; Vainshtein &
Zeldovich, 1972; Gabov et al, 1996). As this effect does not alter our argu-
mentation, we drop it for sake of simplicity.

We supplement Equations (5), (6) by the standard boundary conditions

Br(±h) = 0 (7)

Bϕ(±h) = 0 , (8)

noting however that this excludes some odd (dipole) modes of the thin disc
(Rädler & Bräuer, 1987; cf. Soward, 1992, or Dobler & Walker, 1997, for a
detailed discussion).

In the applications to astrophysical discs, the term (αBr)
′ in (6) is usu-

ally neglected since it is dominated by differential rotation GBr, which
leads to so-called αω-dynamo models. For discontinuous α, this assumption
seems to be problematic, because α′∼δ(z) is surely ÀG in the equatorial
plane. This is however a too naı̈ve argument and we will justify the αω-
approximation for this case in Section 4.

2.1 Jump conditions for the magnetic field

Following Ruzmaikin et al (1979) and Sokoloff (1997) we integrate Equa-
tions (5), (6) across the surface of discontinuity. The important contribution
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comes from near the equatorial plane, and supposing Br and Bϕ to be con-
tinuous (i. e. excluding surface currents) the limit lim

ε→0

ε∫
ε
(5), (6) dz yields

0 = −[[α]]Bϕ(0) + [[βB′
r]] (9)

0 = [[α]]Br(0) + [[βB′
ϕ]] . (10)

These jump conditions must be fulfilled when matching solutions of Equa-
tions (5)–(8) on the upper with solutions on the lower half of the disc.

Condition (9) shows that for even (quadrupole) modes B′
r will be dis-

continuous if [[α]]6=0. Particularly, instead of the relations B′
r(0)=0, B′

ϕ(0)=0

holding for the even modes of a dynamo with continuous α, we now have

−B′
r(−0) = B′

r(+0) =
1

β(0)

[[α]]

2
Bϕ(0) (11)

−B′
ϕ(−0) = B′

ϕ(+0) = − 1

β(0)

[[α]]

2
Br(0) , (12)

supposing β(z) to be continuous. Integrating Equations (5), (6) from 0 to h
we get

d

dt

h∫

0

Br dz = β(h)B′
r(h) (13)

d

dt

h∫

0

Bϕ dz = G

h∫

0

Br dz+β(h)B′
ϕ(h) (14)

for even modes. Ruzmaikin et al (1979) arrived at a different formula for
∫
Br dz, namely Equation (13) with an additional term −[[α]]Bϕ(0). This is

probably due to the erroneous assumption that B′
r(±0)=0. If this were the

case, of course (9) could not be fulfilled (at least for Bϕ(0)6=0) and one would
really need an additional source term in the dynamo equation (5). But as
things are, the jump in αBϕ is compensated by the one in βB′

r and there is
no need (and no justification) for complicating Equations (5), (6) by adding
any terms.

2.2 An alternative approach

The jump condition (9), (10) can also be obtained in an alternative way,
starting from Maxwell’s equation

∂B

∂t
= − curlE . (15)
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Excluding magnetic flux sheets that would lead to infinite magnetic energy
density, Equation (15) yields that

[[Etang]] = 0 (16)

on any boundary, i. e. the tangential components Etang of the electric field
are continuous1. Condition (16) was used in several dynamo models, cf. for
example Krause & Rädler (1980).

Now Ohm’s law implies that

curlB = µ0j =
1

β
(E + u×B + αB) , (17)

that is,
E = −[u×B + αB− β curlB] . (18)

For a thin disc with u=rωeϕ and ∂/∂ϕ ≡ 0 this becomes

Er = αBr + βB′
ϕ (19)

Eϕ = αBϕ − βB′
r . (20)

Hence, it is evident that the requirement [[Etang]] =0 leads just to the jump
conditions (9), (10).

3 Discontinuities on arbitrary surfaces

Sokoloff (1997) derived a generalisation of the additional source term for
the case of general surfaces of discontinuity by integrating the induction
equation

∂B

∂t
= curl [u×B + αB− β curlB] (21)

over the whole space. Let α be continuous on IR3\S with S denoting an ar-
bitrary, measurable surface. Let α+ (α−) be the value of α(x) on the positive
(negative) side S+ (S−) of S; let [[α]] :=α+−α− on S. We assume that α and u

are localised in space, B is square integrable, and that β grows not faster
than O(

√
r) for r→∞. Then, integration of Equation (21) over the whole

space except an ε-neighbourhood Uε(S) of S gives

d

dt

∫

IR3\Uε(S)

B dx3 = −
∫

∂Uε(S)

[u×B + αB− β curlB]× dS . (22)

1Enormal, on the other hand, does jump, because discontinuities in the induction effects
lead to surface charges.
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The integral on the left-hand side should be regarded as a principial-value
integral, cf. Dobler (1997). For ε→0 we get

d

dt

∫

IR3

B dx3 = −
∫

S

(
[u×B + αB− β curlB]+

−[u×B + αB− β curlB]−
)
× dS (23)

and the right hand side is what gave rise to Sokoloff ’s additional term.
According to (18), the expression in square brackets is simply −E and

we get
d

dt

∫

IR3

B dx3 = −
∫

S
[[E]]× dS = 0 (24)

because of (16). This result also follows directly from (15) and states that
the magnetic moment ~µ := v. p.

∫
B dx3 (cf. Sokoloff, 1997; Dobler, 1997) is

conserved even when the coefficients in the induction equation (21) have
surfaces of discontinuity.

Equation (24) clearly shows that Sokoloff ’s additional term is identically
zero when appropriate account is taken of the (discontinuous) term β curlB.

4 The αω-approximation for discontinuous α-
effect

It seems that the neglection of the α-effect in the azimuthal equation (6)
can not be justified when α′ is a δ-function, as indicated in the Introduction
and also at the end of the paper by Ruzmaikin et al (1979), and that this
is a possible source of discrepancies with calculations for full α2ω-dynamos
with weak α-effect. However, this explanation can be ruled out. To show
this, let us write down Equation (6) for Parker’s model in dimensionless
form

∂Bϕ

∂t̃
= Rα(α̃Br)

′ +RωBr + (β̃B′
ϕ)′ , (25)

where dimensionless quantities are indicated by tilde and the prime now
denotes differentiation with respect to z̃. The quantities Rα =α∗h/β(0) and
Rω =Gh2/β(0) are magnetic Reynolds numbers with α∗ denoting a charac-
teristic value of α (e. g. α∗ = 1/(2h)· ∫ h

−h |α| dz), and in Parker’s model we have
α̃(z̃)= sgn z̃. For simplicity, we suppose β̃(z̃) to be continuous. The change to
non-dimensional variables is a formal transformation and Equation (25)
holds independent of whether α′(z) — or even α(z) — is bounded or not.
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It is evident that for z̃ 6=0 the first term on the right hand side can safely
be neglected if Rω/RαÀ1. At z=0, the jump condition (10) and the equation
for the time evolution of Bϕ(0) govern the behaviour of Bϕ. They can be
obtained by integrating (25) from −ε to ε and retaining terms up to the
order ε. For even modes we get

Rα[[α̃]]Br(0) + [[B′
ϕ]] = 0 (26)

dB̃ϕ(0)

dt
= Rα

[
α̃(+0)B′

r(+0) + α̃′(+0)Br(0)
]
+

+ RωBr(0) + (β̃B′
ϕ)′(+0) . (27)

Equations (26) and (27) give a good criterion to compare the influence of
differential rotation and α-effect. In Equation (27), the α-effect can be ne-
glected if |Rω|À|Rα|, just as in Equation (25) for z̃ 6=0.

In the jump condition (26), the first term is negligible (and thus B′
ϕ can

be regarded as continuous) provided that
∣∣∣∣∣Rα

Br

Bϕ

∣∣∣∣∣ ¿ 1 . (28)

The ratio of azimuthal to radial field can be estimated by
∣∣∣∣
Bϕ

Br

∣∣∣∣ ∼ |Rω|m·|Rα|n . (29)

For the exponents m,n the values m=n=1/2 (which implies Bϕ/Br∼
√
D;

D=RαRω denotes the dynamo number) are given by Ruzmaikin et al (1988)
for continuous profiles of α. Parker’s results yield m=1/3, n=−2/3 for his
model — cf. his equations (63), (64) or Section 5 of the present paper. Con-
dition (28) then becomes

|Rω|m
|Rα|1−n

À 1 . (30)

Thus, for m=n=1/2 we get the condition |Rω|À|Rα| for the applicability
of the αω-approximation; for m=1/3, n=−2/3 we get |Rω|À|Rα|5. This latter
condition has also been derived by Ruzmaikin et al (1980b). We note, how-
ever, that the exponents m, n for Parker’s model are only valid for small
growth rates γ. In particular, for Rα=O(1), |Rω|→∞, the αω-approximation
may be invalid (as some preliminary numerical experiments seem to indi-
cate), just as in the case of Moffatt’s model (1) that will be discussed at the
end of Section 6.
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For odd modes, instead of (26), (27) we get simply
dBϕ(0)

dt
= 0 . (31)

This confirms the finding of Ruzmaikin et al (1980b) that dipole modes are
not sensitive to a jump in α at z=0 at all.

5 Analytical vs. numerical results

Once we have ruled out the possibility that discontinuous induction effects
give rise to additional source terms, and having shown the applicability
of the αω-approximation, how can we explain the different properties of
Parker’s (1971) analytical solution compared to the numerical results by
Ruzmaikin et al (1979) and others? The answer is that there are no severe
discrepancies in the field structure, but the unlucky scaling of Parker’s fig-
ure 5 led to its misinterpretation.

Ruzmaikin et al conclude from Equations (5), (6) that for G<0 (which
is the case for Keplerian and galactic discs) the azimuthal field Bϕ and the

integral of the radial field
h∫
0
Br dz must have opposite sign, while in Parker’s

figure Bx (corresponding to Br) and By (i. e. Bϕ) are both positive in the
whole disc. But the latter is not true: In Parker’s figure, Bx is scaled with a
factor R1/3

ω /R2/3
α relative to By. For G<0 this scaling factor is negative, thus

the physical field component Bx(z) is negative although its dimensionless
counterpart plotted by Parker is positive. Taken into account this scaling,
Bx has the appropriate sign and the qualitative behaviour of Bx and By is
quite similar to that obtained from other distributions α(z).

Here we give the exact result for the stationary solution (∂B/∂t=0) of
Equations (5), (6) with α-effect (2) and boundary conditions (7), (8) in the
αω-approximation:

Br = C1e
−κ|z| + e

κ
2
|z|

(
C2 cos

√
3κ

2
z + C3 sin

√
3κ

2
|z|

)
(32)

Bϕ =
κ

Rα

[
− C1e

−κ|z| +

+ e
κ
2
|z|

(
C2+

√
3C3

2
cos

√
3κ

2
z −

√
3C2−C3

2
sin

√
3κ

2
|z|

) ]
. (33)

We have set β≡1, h=1; the parameter κ :=D1/3 is a solution of the equation

e
3
2
κ + 2 cos

√
3κ

2
= 0 (34)
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Table 1: Translation of some important symbols from Parker’s notation to ours

Parker: νQ123 η kh ηk2/G kx ηkkx/G

present paper: −α β −κ=−D1/3 R2/3
α /R1/3

ω k −khR1/3
α /R2/3

ω

Table 2: Parameters for the first four exact solutions of Parker’s αω-dynamo model. For
comparison, the critical dynamo numbers DParker according to Parker are given in the last
line
κ=D1/3 : -1.84981 -5.44123 -9.06900 -12.69660
D : -6.32970 -161.098 -745.895 -2046.736
C1 : 0.032850 -1.4263·10−4 6.1808·10−7 -2.6784·10−9

C2 : 0.92836 0.86574 0.86603 0.86603
C3 : 0.49806 0.50000 0.50000 0.50000

D
1/3
Parker : -1.815 -5.43

and the coefficients C1, C2, C3 are determined by

C1 = c(s+
√

3c) (35)

C2 =

√
3

2
+2cs (36)

C3 =
1

2
− 2c2 (37)

with c := cos(
√

3κ/2), s := sin(
√

3κ/2). Note that our coefficients C1,2,3 have
nothing to do with Parker’s C1. . .C4.

For convenience, Table 1 lists the most important symbols in Parker’s
notation and in the one used here. Table 2 lists the first three critical dy-
namo numbers D as determined from Equation (34), together with the cor-
responding values of C1, C2, C3.

Comparison of these results with Parker’s formulas (62), (63) shows
quite good agreement despite some approximations made by Parker at this
point. In particular, he also found non-oscillating modes with very simi-
lar critical dynamo numbers. If one allows for slow radial variation of the
magnetic field with a radial wave number k¿ 1/h, the z-component of the
magnetic field can be calculated from f(r)·Br =−B′

z/k, where Parker gets
f(r)= tan(kr−π/6), while a model of an infinite slab with exact treatment
of the radial dependence yields f(r)=J0(kr)/J1(kr) (cf. Dobler & Walker,
1997). This gives

Bz = f(r)·k
κ

sgn z

[
C1e

−κ|z| −
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− e
κ
2
|z|

(
C1 cos

√
3κ

2
z +

√
3C2 + C3

2
sin

√
3κ

2
|z|

) ]
. (38)

Parker’s z-component (65) looks considerably different for the first even
mode, but for kh¿1 the vertical field component is small and irrelevant for
the overall field structure.

In the limit of large negative dynamo numbers κ→−∞, the above equa-
tions reduce to

Br = e
κ|z|
2 cos

(√3κ

2
|z|−π

6

)
(39)

Bϕ =
κ

Rα

e
κ|z|
2 cos

(√3κ

2
|z|+π

6

)
(40)

Bz = −f(r)
k

κ
e

κ|z|
2 sin

√
3κ

2
z . (41)

The same asymptotics follows from Parker’s equations. As the exponen-
tial function decays very rapidly for −κÀ1, the field takes the form of a
boundary layer located at the midplane z=0. This boundary layer can be-
have qualitatively very different for a smooth α-profile, where |α|¿α∗ for
z≈0. In fact, the asymptotic behaviour for |D|→∞ is the only point where
the continuity properties of α(z) play an important rôle — but not a more
prominent one than other details of α(z) near the midplane (cf. Ruzmaikin
et al, 1988).

In order to verify our conclusion from Section 2 that there is no addi-
tional source term for discontinuous α-coefficients, we compared our exact
result (32), (33), (38) with numerical solutions for the same problem. We
applied a simple central-difference scheme with vertical grid size δz=2h/N

as described by Baryshnikova & Shukurov (1987) and solved the resulting
matrix eigenvalue problem by LAPACK routines. Two different approaches,
one with step-like α-effect, α(z)= sgn z, the other with a resolved step,
α(z)= tanh(z/2δz), converged towards the same solution as we increased
N . Figure 1 shows that the numerical results and our exact solution are in
excellent agreement. Parker’s solution — his equations (64)–(66) — which
is obtained after some steps of approximation, is quite close to the exact
result, apart from the (unimportant) z-component.

Next, we compared Parker’s growth rates (the formula before his equa-
tion (61)) that were criticised by Ruzmaikin et al (1979), with our numer-
ical solution. The result, shown in Figure 2, shows that the criticism is
fully justified: there is no resemblance between the two results — except
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D = −161.0987

κ = −5.4412
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Figure 1: First two even modes of Parker’s (1971) αω-dynamo model. Left: exact re-
sult; middle: numerical solution with grid size N=60; right: Parker’s equations (64)–(66).
Shown are the azimuthal field Bϕ (solid line), radial field Br (dashed) and scaled vertical
field B̃z:=Bz·2Rα/(kf(r)) (dotted).

for the zeros of γ(D). These coincide with the exact values, because the
denominator in Parker’s formula for γ(D) is proportional to our Equation
(34). However, the rest of the time-dependence has been lost due to the ap-
proximations made. This finding also overrides Moffatt’s (1978) conclusion
about the sensitivity of the growth rates to details of the dynamo model:
Moffatt’s growth rates are quite reasonable and must not be compared to
Parker’s, which are artefacts.

We emphasise that the deviations in the growth rates (Figure 2) are
not due to the discontinuity of α(x) in Equation (2). There is no reason to
believe that for γ 6=0 any noticeable differences between the exact solution
of Parker’s model and numerical solutions of the smoothed model (3) should
occur. The grossly wrong behaviour of γ(D) must be exclusively due to some
additional approximations made by Parker, and an exact solution of the
time-dependent dynamo model would reproduce the curves γ(D) that we
obtained numerically in Figure 2.



DYNAMO EQUATIONS WITH DISCONTINUOUS COEFFICIENTS 13

−15 −10 −5 0 5 10 15
κ = D1/3

−30

−20

−10

0

10

20

30

G
ro

w
th

 r
at

e 
γ

−3000 −1000   −300   −100 −10 0 10 100 300 1000 3000
Dynamo number D

Figure 2: Numerically obtained growth rate γ for the first four even modes as a function
of κ. Solid line: real growth rate; dashed line: real part of γ for oscillating modes. The
dotted line represents Parker’s result; his growth rates are real anywhere in the plotted
range. Note that his zeros are exact despite the qualitatively wrong shape of the graph.

6 Conclusion

Our conclusion from the comparison of our exact solution (32), (33), (38)
with numerical results is clear: models with discontinuous α-coefficient
α(z)= sgn z are fully compatible with numerical calculations and can be
arbitrarily good approximated by continuous profiles α(z)= sgnε z with
lim
ε→0

sgnε z= sgn z. Although there is a term containing the derivative
α′(z)∼δ(z) in the equations, nothing unexpected happens and in particu-
lar no additional terms appear in the induction equation.

When the induction coefficients themselves contain δ-functions like in
Moffatt’s (1978) model, things are a bit more difficult. In the course of solv-
ing Equations (5) and (6), products of generalised functions of type δ(z)·θ(z)
appear, which are not mathematically well-defined as was stressed by Ruz-
maikin et al (1980b). This can be illustrated as follows. From the identity

[θ(x)]n = θ(x) (42)
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that holds at least in all points except x=0, we get by differentiating

n[θ(x)]n−1δ(x) = δ(x) (43)

which implies n·[θ(0)]n−1 = 1. For different n∈IN this leads to contradicting
values of θ(0), which indicates that θ(x)·δ(x) is not well-defined. Other prob-
lems arise, when the θ-function and the δ-function are not “concentric” (cf.
Ruzmaikin et al, 1980b), but this is unimportant here, since the θ-function
is obtained directly from the δ-function, which ensures concentricity.

It would be far too restrictive to exclude any product of generalised func-
tions from consideration. Rather, working with approximations θε, δε of the
Heaviside and Dirac function, one gets a feeling of what is allowed in this
field. The apparent contradiction in Equation (43) is connected with the
fact that there is evidently no continuous θε, for which Equation (42) holds
for all n∈IN. Thus, one has to avoid applying Equation (42) or the more
general form f(θ(x)) = f(0) + θ(x)·[f(1)−f(0)] and work with the original
expression [θ(x)]n or f(θ(x)). Results achieved in this way will be free of the
mathematical problems mentioned above. If necessary, one could instead
exploit structural similarities of special approximations, as for example
sgnε(x) = sgn x· exp(−ε/x2) with sgn3

ε = sgn3ε etc.
Analog relations to (26), (27) can be determined for Moffatt’s (1978) type

of model (see Equation (1)) in order to determine the applicability condition
for the αω-approximation. As in Section 4, the equation for dBϕ(0)/dt yields
no additional information, while the “jump condition” now reads

RαBr(ζ̃) ·
ζ̃+0∫

ζ̃−0

α̃(z̃) dz̃ + [[Bϕ]] = 0 (44)

with Br(ζ̃) := (Br(ζ̃+0) + Br(ζ̃−0))/2. Thus, we again can neglect the term
(αBr)

′ in Equation (6) (and regard Bϕ as continuous) provided that
∣∣∣∣∣Rα

Br

Bϕ

∣∣∣∣∣ ¿ 1 . (45)

The asymptotic ratio Br/Bϕ for |Rω|À|Rα| has been given by Ruzmaikin
et al (1980b). For D≈Dcrit their result is Br/Bϕ ∼ (|Rα|/|Rω|)1/2, which gives
|Rω|À|Rα|3 as applicability condition for the αω-approximation. This is triv-
ially fulfilled because we have Rα∼Dcrit/Rω in this case.

If Rα=O(1) is fixed, the growth rate increases with Rω and we have
Br/Bϕ∼Rω ln |D| for Rω→∞. Now our condition would read D ln |D|¿1,
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which obviously contradicts our assumption RωÀRα=O(1). Hence, we find
that for Rα=O(1) the αω-approximation is not permissible in Moffatt’s
model, independent of the magnitude of Rω. This was also concluded by
Ruzmaikin et al (1980b), but based on the more naı̈ve assumption that the
αω-approximation holds whenever Br/Bϕ¿ 1 instead of our condition (45).

Acknowledgements

I am grateful to Anvar Shukurov for helpful remarks and notes. In addi-
tion, I want to thank Dmitrij Sokoloff for initiating the present paper and
for stimulating and controversial discussions.

References

Baryshnikova, Y. and Shukurov, A., “Oscillatory α2-dynamo: numerical
investigation,” Astron. Nachr. 308, 89–100 (1987).

Braginskij, S. I., “Self-excitation of a magnetic field during the motion of a
highly conducting fluid,” Sov. Phys.-JETP 20, 726–735 (1964a).

Braginskij, S. I., “Theory of the hydromagnetic dynamo,” Sov. Phys.-JETP
20, 1462–1471 (1964b).

Braginskij, S. I., “Kinematic models of the Earth’s hydromagnetic dy-
namo,” Geomagn. Aeron. 4, 572–583 (1964c).

Dobler, W., “Evolving magnetic fields and the conservation of magnetic
moment,” Geoph. Astroph. Fluid Dyn. (submitted), (1997).

Dobler, W. and Walker, M. R., “Homogeneous vertical magnetic field modes
in thin disc dynamos,” in preparation.

Gabov, A. S., Sokolov, D. D. and Shukurov, A. M., “Turbulent diamagnetism
in a galactic disc,” Astronomy Reports 40, 463–471 (1996).
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trodinamike srednikh polej,” Vestnik Moskovskogo Universiteta. Serija 3.
Fizika i astronomija 5, 3–6 (1997)).



DYNAMO EQUATIONS WITH DISCONTINUOUS COEFFICIENTS 17

Soward, A. M., “Thin disc kinematic αω-dynamo models I. Long length
scale modes,” Geoph. Astroph. Fluid Dyn. 64, 163–199 (1992).

Vainshtein, S. I., and Zeldovich, Ya. B., “Origin of magnetic fields in astro-
physics,” Sov. Phys. Usp. 15, 159–172 (1972).


