
A Quick Introduction to CVS

Wolfgang Dobler�

Revision: 1.25 , Date: 2005/11/28 22:32:29

Contents

1 What CVS does 2

2 Nomenclature 2

3 Getting help 2

4 Environment variables 3

5 A sample session 3

6 Tags and revision numbers 6

7 Con�icts 7

8 Flags issued by `update' 8

9 CVS/RCS Keywords 9

10 Creating a repository 10

11 Nota Bene 10

12 My top ten CVS commands 12

13 Other user interfaces 13

A Overview over CVS commands 16

B Branches 20

B.1 Accessing branches . 20

B.2 Creating branches . 21

C Tips, tricks and troubleshooting 21

C.1 User level tips and tricks . 21

C.2 Administration . 22

C.2.1 Problems with the CVS pserver . 22

�Please send comments etc. to Wolfgang.Dobler@ucalgary.ca

1

Wolfgang.Dobler@ucalgary.ca

1 What CVS does

CVS (Concurrent Versions System)

� is a system that lets groups of people work simultaneously on groups of �les (for
instance a numerical code, a LATEXpaper, a set of HTML pages, etc.)

� allows you to retrieve older versions of (the important �les in) a directory tree,
identi�ed by date, speci�c tags, . . .

� forces you (to some extent) to write log messages for any changes you make to
your code. These messages are recorded and with `cvs log . . . ' you can obtain a
full annotated changelog history for a given �le or module

� can also be used to keep your computing environment in sync (e.g. `�/bin ',
`�/idl/lib ', `�/tex/include ') across different computers

2 Nomenclature

Some speci�c terms you should know:

repository: The directory structure where CVS stores the �les it manages, together
with some administrative �les

module: Essentially, a directory tree subject to version control. More formally, a
module is a directory tree listed in `CVSROOT/modules ', which can be accessed
under the module name instead of the full path

tags, rtags: Labels attached to the �les (possibly directories) and modules, allowing
to identify them more easily

revision: A numerical or alpha-numerical tag identifying the version of a �le

check in (commit) / check out: Write your modi�ed version of a �le/module to the
repository (commit); retrieve the latest or a particularly speci�ed version from
the repository (check out)

3 Getting help

There are several levels of information available for the CVS commands.

1. `cvs -H command' or `cvs --help command' gives an overview of command. A (brief)
overview of the `cvs' command itself is obtained by `cvs -H'.

2. The CVS manpage (`man cvs') shows a brief overview over all CVS commands,
followed by a detailed list of general options and a more detailed description of
the individual commands.

3. http://www.cvshome.org/ is the standard reference site for CVS. Apparently,
three lists of frequently asked questions are available, two of which (http://
www.loria.fr/~molli/cvs/cvs-FAQ-1.4/cvsfaq0.html and http://www.loria.fr/

2

http://www.cvshome.org/
http://www.loria.fr/~molli/cvs/cvs-FAQ-1.4/cvsfaq0.html
http://www.loria.fr/~molli/cvs/cvs-FAQ-1.4/cvsfaq0.html
http://www.loria.fr/cgi-bin/molli/fom.cgi

cgi-bin/molli/fom.cgi) are quite extensive, but not up to date, while the
third (href="http://ccvs.cvshome.org/fom/fom.cgi") is up to date and appar-
ently quite short.

4. The Cederqvist manual (`Version Management with CVS' by Per Cederqvist et
al.) is the of�cial (and comprehensive) documentation to CVS. You can read
it online as info �le with `info cvs' (or using Emacs as info reader), read
the HTML version under `http://www.cvshome.org/docs/manual/cvs.html (De-
bian GNU/Linux also installs it under `/usr/doc/cvs/html-info/cvs_toc.html '), or
get a PostScript version from the web sites mentioned above.

5. A good book on CVS, which is freely available online is `Open Source Develop-
ment with CVS' by Karl Fogel (http://cvsbook.red-bean.com/).

4 Environment variables

CVSROOT points to the repository you want to use. If you use a local
repository, CVSROOT simply contains the �le name of the top CVS di-
rectory. For server/client access, the CVSROOT variable has the form
`:pserver:user@server:directory '; see Section 5 for an example.

CVSEDITOR determines the editor used for the log messages you have to enter.
Set this to `vi', `emacsclient' or whatever you like, if you are not happy with the
editor speci�ed in $EDITOR for that purpose.

5 A sample session

Note: All examples below assume you are using the server/client method

to access the repository. If this is not the case, you need to set CVSROOT

accordingly and just ignore the cvs login and cvs logout commands.

All examples assume that some directories and modules (like test) have
already been checked in; this is because this document was written for a

speci�c group working with a speci�c code. To really start from scratch you

may want to have a look at other documentation.

Set the CVSROOT environment variable to
`:pserver:$USER@cvsserver.somehwere.net:/home/cvs/cvsroot', where $USER should
be the user name on the CVS server. You need to adapt the server name
(cvsserver.somehwere.net in the example) and the repository path (our example
/home/cvs/cvsroot corresponds to a system where a user `cvs' owns the repository).

Log in for server/client mode:

unix> cvs login
(Logging in to USER@cvsserver.somehwere.net)
CVS password:

Get a working copy of module test :

3

http://www.loria.fr/cgi-bin/molli/fom.cgi
http://www.loria.fr/cgi-bin/molli/fom.cgi
href="http://ccvs.cvshome.org/fom/fom.cgi"
http://cvsbook.red-bean.com/
:pserver:$USER@cvsserver.somehwere.net:/home/cvs/cvsroot

unix> cd ~/f90/work
work> cvs checkout test (or, synonymically, cvs co test)
[lengthy output]

This gets you the latest version of module `test' from the repository; it creates a direc-
tory `test/ '.

work> cd test/

Edit the �les you want to modify:

work/test> [vi/emacs] src/run.f90
work/test> [vi/emacs] runs/run1/run.in

Maybe you also want to delete a �le and create a new one:

work/test> rm unnecessary.txt; cvs remove unnecessary.txt
work/test> cp src/start.f90 src/start_test.f90
work/test> [vi/emacs] src/start_test.f90; cvs add src/start_test.f90

Note that cvs add/remove does not change anything in the repository before you also
commit the changes:

work/test> cvs update (get new version from server if available)
R unnecessary.txt
cvs server: Updating idl
cvs server: Updating runs
cvs server: Updating runs/run1
M runs/run1/run.in
cvs server: Updating src
A src/start_test.f90
M src/run.f90

(your output will look different). This indicates that the �les runs/run1/run.in and
src/run.f90 have been modi�ed by you, while src/start_test.f90 has been added and
unnecessary.txt removed. Now commit the changes:

work/test> cvs commit
cvs commit: Examining .
cvs commit: Examining idl
cvs commit: Examining runs
cvs commit: Examining runs/run1
cvs commit: Examining src
Removing unnecessary.txt;
/home/cvs/cvsroot/test/unnecessary.txt,v <-- unnecessary.txt
new revision: delete; previous revision: 1.1.1.1
done
Checking in runs/run1/run.in;
/home/cvs/cvsroot/test/runs/run1/run.in,v <-- run.in
new revision: 1.2; previous revision: 1.1
done
RCS file: /home/cvs/cvsroot/test/src/start_test.f90,v
Checking in src/start_test.f90;

4

/home/cvs/cvsroot/test/src/start_test.f90,v <-- deriv_6th.f90
initial revision: 1.1
done
Checking in src/run.f90;
/home/cvs/cvsroot/test/src/run.f90,v <-- run.f90
new revision: 1.2; previous revision: 1.1
done

Note:

1. You can choose which �les or directories/modules to commit:

work> cvs commit test (equivalent to the above)

work> cvs commit test/src/run.f90 (commit just one �le)

2. If you do not want an editor to be started each time you commit, you

can issue the log message directly when committing (option `-m'):

work> cvs commit -m "Fixed entropy diffusion" test/src/run.f90

To get information about the changes that run.csh has gone through, use

work/test> cvs log src/run.f90
[lengthy output]

If you want to know what the differences are between your working version of the
code and the version you were starting with, type

work/test> cvs diff src/run.f90
[no output]

Therefore, your version has not been modi�ed since the last update or commit. By
contrast, to see the differences with respect to the latest version in the repository, use
`cvs diff -r HEAD run.csh'.

But you can also check what made revision 2.0 so different from revision 1.1:

work/test> cvs diff -r1.1 -r2.0 src/run.f90
[output in Unix diff(1) format]

The command `cvs status' shows you the current status of a �le/directory or reposi-
tory:

work/test> cvs status src/run.f90
===
File: run.f90 Status: Up-to-date

Working revision: 2.0
Repository revision: 2.0 /home/cvs/cvsroot/test/src/run.f90,v
Sticky Tag: 2.0
Sticky Date: (none)
Sticky Options: (none)

When you are done with the code, you can check whether you have committed all your
changes:

5

work/test> cd .. (You must be immediately above
the directory you were working on)
work> cvs release test
M start.csh
You have [1] altered files in this repository.
Are you sure you want to release directory ‘test’: n
** ‘release’ aborted by user choice.

In this example you had not, and entered `n' to cancel the release. Now commit the
modi�ed �le start.csh and release again:

work> cvs commit -m "Set nwidth to 17" test/start.csh
work> cvs release -d test (Be careful when using the `-d' option!)
You have [0] altered files in this repository.
Are you sure you want to release (and delete) directory ‘test’: y

With the `-d' option, release removes the working copy of the module, provided you
tell it to do so by answering `y' to the prompt. If you hurry at this point, you can lose

data.

At the end of your session, you can

work/test> cvs logout

which will remove the entry for the given CVS server from the �le `�/.cvspass '. This
means that the next time you want to access the server again from the same machine,
you will be asked for the CVS password again.

6 Tags and revision numbers

CVS identi�es revisions with unique version numbers, like 1.1.1.4 or 2.15. Often it is
much more convenient to refer to a given revision with a symbolic tag. You can attach
a tag to your working copy with

work/test> cvs rtag jets-hydro-5 test

Do not use rtag in the form `cvs rtag hydro-5 .' � rtag needs the module name as last
argument and will otherwise tag all the �les you have under CVS control, affecting
any other modules as well.

There is also a command `cvs tag'. The bottom line is that you use tag to tag individ-
ual �les, but rtag for the whole module.

A more detailed discussion of the differences between tag and rtag is given in one of

the FAQs (http://www.loria.fr/~molli/fom-serve/cache/211.html): The end result of both

commands is that a [tag], or symbolic name, is attached to a single revision in each of a

collection of �les. The differences lie in:

� The collection of �les they work on.

"rtag" works on the collection of �les referred to by a "module" name as de�ned in the

"modules" �le, or a relative path within the Repository.

"tag" works on �les and directories speci�ed on the command line within the user's

working directory. (Default is '.')

6

http://www.loria.fr/~molli/fom-serve/cache/211.html

Both commands recursively follow directory hierarchies within the named �les and

directories.

� The revisions they choose to tag.

"rtag" places a tag on the latest committed revision of each �le on the branch speci�ed

by the '-r' option. By default it tags the Main Branch.

"tag" places a tag on the BASE (i.e. last checked out, updated or committed) revision

of each �le found in the working directory. (The BASE revision of a �le is the one

stored in the ./CVS/Entries �le.)

[. . .]

If you want to bring all your �les up to revision 3.0 (including those that haven't
changed), you might invoke

work/test> cvs commit -r 3.0

This only works if none of the �les in the module had a revision number higher than
3.0. It is probably a good idea to check with your collaborators before you decide to
increase the major revision number (the �rst digit of the revision number).

7 Con�icts

If you want to commit a �le (say, run.csh), but someone else has in the meantime
committed a later version of it than the one you were working with, `commit ' will
speak very roughly to you:

unix> cvs commit -m ’Removed a few module references’
cvs commit: Examining src
cvs commit: Up-to-date check failed for ‘src/run.f90’
cvs [commit aborted]: correct above errors first!

What you should do now is update the �le `src/run.f90 ' (or the whole directory `src '):

unix> cvs update src
cvs server: Updating src
RCS file: /home/cvs/cvsroot/test/src/run.f90,v
retrieving revision 2.0
retrieving revision 2.1
Merging differences between 2.0 and 2.1 into run.f90
M src/run.f90

If you are lucky � i. e. if the changes appeared in different �les, or even if they are
located in non-overlapping regions of the same �le � the two versions are automat-
ically merged and everything is OK. If you have doubts, take a look a the merged
�le. (If you are unlucky, you must manually resolve the con�ict, see below.) Now
src/run.f90 contains both modi�cations together1, and you can commit the merged
�le:

1 If this is not what you wanted, you can reconstruct your version of test/src/make�le with `cvs
update -j ...'

7

unix> cvs commit -m "Made important changes and merged" src
Checking in run.f90;
/var/local/cvsroot/test/src/run.f90,v <-- run.f90
new revision: 1.3; previous revision: 1.2
done

If you are really lucky, the merged code still compiles. . .

However, if you and your colleague have modi�ed the same part of the code, the con-
�ict can not be resolved automatically by merging, and you obtain a warning

unix> cvs update
cvs server: Updating src
RCS file: /home/cvs/cvsroot/test/src/run.f90,v
retrieving revision 2.1
retrieving revision 2.2
Merging differences between 2.1 and 2.2 into run.f90
rcsmerge: warning: conflicts during merge
cvs server: conflicts found in src/run.f90
C src/run.f90

Now you have to resolve the con�ict manually by editing the �le, �xing it and running
`cvs commit.' The �le src/run.f90 looks like this:

...
!

use Mpicomm
<<<<<<< run.f90
! use Cdata
! use Deriv
=======

use Cdata ! Really use it
use Deriv

>>>>>>> 2.2
use Sub
use Timestep

...

The line between `<<<<<<<' and `=======' represents your changes of run.csh, while the
part between `=======' and `>>>>>>>' has been committed in version 2.2 of the �le by
your swift colleague.

You can �nd your version of the �le in the hidden �le `src/.#run.csh.2.1'.

8 Flags issued by `update'

In the previous example, `update ' �agged test/src/make�le with the capital letter `M'
and test/run.csh with `C'. Here is a list of all the �ags used by `update '.

8

Flag Meaning

U File was updated from the repository.

P Essentially the same as `U' (but the server sends a patch, rather than the

whole �le)

A File has been added to your private copy of the sources. This is a reminder

that the �le needs to be committed.

R File has been removed from your private copy of the sources. This is a re-

minder that the �le needs to be committed.

M File is modi�ed in your working directory. It had either not been modi�ed in

the repository, or your changes and those in the repository have been suc-

cessfully merged.

C A con�ict occurred. An unmodi�ed copy of your �le is saved as

`.#file.version' in your working directory where version is the revision that

your modi�ed �le started from.

? File is in your working directory, but not in the repository, nor is it in the list

of �les for CVS to ignore. You probably want to add it.

9 CVS/RCS Keywords

When you check in �les, CVS automatically expands strings of the form `$Author$',
`$Date$', `Id', etc. with information about the �le. In particular, `Id' will be ex-
panded to something like

$Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $

which is often quite useful to have somewhere in your text �les. You can even print
this string in your code or include it in a LATEX �le.

Using CVS Keyword Expansions in LaTeX [after http://atom.ecn.purdue.edu/
~notz/latex-cvs.html] Using CVS keywords in a LATEX document is not straightfor-
ward, since the dollar sign switches to mathematical mode if no measures are taken.
There are two common workarounds and two LATEX-packages:

1. Encapsulate the keyword line by a \verb$$ environment:

\verb$Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $
or

\verb|$Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $|

(depending on whether you want the dollar signs to be printed or not). This ap-
proach is subject to the limitations of the \verb environment, which, e. g. cannot
be an argument to a LATEX macro.

2. Put `$ ' and ` $' around the keyword line:

$ $Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $ $

This neutralises the Dollar signs (by creating two math environments contain-
ing only one blank) and allows the following text to be used as you like � in-
cluding the font of your choice and handing it over to a macro.

3. The two packages rcs and rcsinfo from CTAN allow the inclusion of RCS key-
words in LATEX documents

9

http://atom.ecn.purdue.edu/~notz/latex-cvs.html
http://atom.ecn.purdue.edu/~notz/latex-cvs.html

10 Creating a repository

If you want to create a new repository, you use cvs init :

unix> cvs -d ~/cvsroot init

� this creates a repository in your home directory. To access this repository, you
should set CVSROOT accordingly:

unix> setenv CVSROOT ~/tmp/cvsroot

11 Nota Bene

� If you are uncertain about what a given command might do, run it with `cvs -n
<command>' �rst.

unix> cvs -n update (Does not change any �le)
unix> cvs -n commit (Does not change any �le)

The `-n' �ag tells CVS to do a `dry run' of the command and not change any �les.

� When creating new directories, remember to explicitly add them. The com-
mands `update ' and `release ' will show the new directory �agged with a question
mark, but nobody will keep you from �nally deleting your working copy and thus
getting rid of all the �les created in your new directory.

� If you rename �les, you must remove the old �le and add the new one:

unix> mv old new
unix> cvs add new
unix> cvs remove old

Remember that for these changes to take place in the repository, you must still
commit them.

The new �le will know nothing about the modi�cation history prior to this operation.

If you want to rename a �le, retaining the full history, then you need direct access to

the repository:2 You copy the �le from `old,v' to `new,v'. Then you do cvs remove on the

old version. This ensures that cvs update removes the old version.

� Before you release a modi�ed working copy, you must commit it � otherwise,
you get warnings about modi�ed �les (marked with `M' in front of the �le name)
and should then de�nitely not continue the release, unless you want to lose the
changes you have made.

� Keep in mind that CVS simply ignores symbolic links. However, there should
be no need to link the src/ directory and �les any more, since all the supposed
advantages of this technique are features of CVS.

� Do not forget the leading cvs for the CVS commands. Otherwise you might end
up with cryptic error messages like in the following example

2 This trick is due to Karl Fogel's book mentioned in Section 3.

10

unix> co start.csh
co: RCS/start.csh,v: No such file or directory

This is an error message from RCS (another version control system), the `co'
command of which you called by accident. Since RCS and CVS are somehow
related (although CVS seems to be no longer built on top of RCS) and CVS
indeed works with �les like `start.csh,v ', you might be tempted to take the error
message for meaningful.

� Do not edit lines of the form

$Id: cvs.tex,v 1.25 2005/11/28 22:32:29 dobler Exp $
$Author: dobler $
$Date: 2005/11/28 22:32:29 $
$Revision: 1.25 $

As discussed in Section 9, they are automatically updated by CVS each time you
commit or update the corresponding �les.

� The revision number of your module does in general not coincide with those of
the �les therein. As an example, some of the source �les that make up RCS 5.6
have the following revision numbers:

ci.c 5.21
co.c 5.9
ident.c 5.3

� You can specify dates (with the `-D' option) in a variety of formats.

These two types of format are preferred:

unix> cvs co -D ’22 Aug 2001’
unix> cvs co -D ’22 Aug 2001 20:05’
unix> cvs co -D ’2001-08-22’
unix> cvs co -D ’2001-08-22 20:05’

However, the following work as well:

unix> cvs co -D ’August 22 2001 20:05pm’
unix> cvs co -D ’a fortnight ago’
unix> cvs co -D ’yesterday’
unix> cvs co -D ’1 hour ago’

So if you want to see what you have done during the previous hour, type

unix> cvs diff -D ’1 hour ago’ src/run.f90

� It makes sense to always update immediately before you commit any changes.
It is not terrible, though, if you don't. You might just get warnings (and disobe-
dience) from `commit '.

� Only commit versions that compile and run. The socially acceptable minimum
is to commit a version that at least compiles successfully.

11

If someone else has made changes simultaneously and your updated code
doesn't compile any more, either �x this problem before committing, or create a
separate branch for your version of the code.

� Be minimalistic about the �les you keep in the working directory. Remember
that there is no need to retain �les (say, IDL programs) that were once useful
and might, perhaps, possibly, under special circumstances be needed again in
the distant future.

In particular, do not keep old versions of �les in your working directory. For ex-
ample, if you modify version 1.5 of `run.f90 ' in an experimental way, just change
it; if you then need the original version, retrieve it with `cvs co -r 1.5 test
run.f90'

� To put a new project under CVS control, go to its top directory and import it:

unix> cd ~/f90/projects/solitons
solitons> cvs import -m "Import of soliton code v. 0.05" \

f90/solitons ncl-mhd Solitons_0-05

Here `f90/solitons ' is the name of the module in the repository, `ncl-mhd ' is a
�vendor tag� (unimportant in our case) and `Solitons_0-05 '3 is a tag attached to
this imported revision, allowing to refer to it later.

The �les are imported with revision number 1.1.1.1, which is speci�c for the
vendor branch. At the same time, the �les have revision number 1.1 and only
this is used for the version on the trunk. So, the �rst time you modify an im-
ported �le, its revision number gets increased to 1.2, the next time to 1.3, and
so on.

Importing a directory does not make it a checked out version of it (i. e. the di-
rectory where you called cvs import will not contain a `CVS ' subdirectory. One
simple way of turning your `solitons ' directory into a CVS-controlled one after
the import is to do

projects/solitons> cd ..
projects> mv solitons solitons-deleteme-eventually
projects> cvs co -d solitons f90/solitons

You can keep the original directory around for some time in case you forgot to
check in some �les, but from now on you will work with the checked-out version.

12 My top ten CVS commands

Here are my top ten commands, i. e. (ordered by frequency of use) the main CVS
commands in my repertoire:

1. cvs -qn update

2. cvs update -d

3 `Solitons-0.05 ' would look much nicer (in my opinion), but tags must not contain any of the char-

acters `$,.:;'

12

3. cvs commit

4. cvs diff <file> (difference to original version)
or
cvs diff -r HEAD <file> (difference to latest repository version).

A variant is
cvs diff -u -rHEAD <file> | a2ps -Eudiff --prologue=diff -Pdisplay
to pretty-print difference between local and latest version

5. cvs checkout <module>

6. cvs add <file>

7. cvs checkout -d <directory> <module>
(check out module into speci�c directory)

8. cvs log <file> | less

9. cvs annotate <file>

10. cvs import <repository> <vendor-tag> <release-tag>

Note: The -q �ag (`be somehow quiet') is so useful for larger projects that you may
want to put the line

cvs -q

into `�/.cvsrc ' to have it always set.

13 Other user interfaces

1. VC (minor) mode: If Emacs is your operating system of choice, you can use
VC mode as a front end to CVS. Normally, Emacs (at least versions � 21) auto-
matically detects which �les are under CVS and adds a string like �CVS:1.15�
to your mode line.

Useful key strokes are

C-x C-q and C-x v v: vc-next-action, do cvs commit or cvs update, whichever
makes more sense

C-x v i: vc-register, i. e. cvs add

C-x v =: vc-diff, does cvs diff on buffer �le

C-x v l: vc-print-log, shows output from cvs log in separate buffer

Less essential, but useful key strokes are

C-x v u: vc-revert-buffer, reverts to the version buffer �le was based on (i. e. un-
does all changes)

13

C-x v ~: vc-version-other-window, loads a speci�c version into another buffer
(allows for ediff)

C-x v a: vc-update-change-log, extracts log information and writes or adds it to
a ChangeLog �le

C-x v h: vc-insert-headers, inserts `Id' as a comment

C-x v g: vc-annotate, do cvs annotate with colors indicating different ver-
sions. . .

2. pcl-cvs: There is another CVS front end for Emacs, called pcl-cvs. I do not use
it and think that VC mode is the way to go, but if you are interested in pcl-cvs,
here is a short description.

To get started, just type `M-x cvs-update RET' and enter the name of a directory
where you have a checked-out CVS module:

PCL-CVS release 1.05 from CVS release $Name: $.
Copyright (C) 1992, 1993 Per Cederqvist
Pcl-cvs comes with absolutely no warranty; for details consult the manual.
This is free software, and you are welcome to redistribute it under certain
conditions; again, consult the TeXinfo manual for details.

In directory /home/dobler/f90/mhdf/work/test:
Updated run.csh

In directory /home/dobler/f90/mhdf/work/test/src:
Modified ci run.f90
Updated mhd1.f90
Unknown mhd2.f90

---------- End -----

Now you can do lots of fancy things with a few key strokes. Look at the info

documentation for pcl-cvs for details.

One of the good points about pcl-cvs is that you have the marvelous tools `ediff '
and `emerge ' at hand (and even automatically invoked) if you need them.

On my Debian system, I had problems getting pcl-cvs to run. See http://www.
kis.uni-freiburg.de/~dobler/docs for how I solved them.

Warning to Vi users: There is a reported case of a Vi user who converted to
Emacs just to be able to use pcl-cvs; so better watch out.

3. tkcvs: If you prefer graphical user interfaces (the ones where you have to me-
chanically repeat the same sequence of 20 mouse clicks all of the time), try tkcvs.

14

http://www.kis.uni-freiburg.de/~dobler/docs
http://www.kis.uni-freiburg.de/~dobler/docs

You will �nd it via the cvshome web page; it should be possible to install it on
any Unix machine running a recent version of tcl/tk.

4. There are also graphical clients for Macintosh (MacCVSClient, see http://
www.cvshome.org/cyclic/cvs/mac.html) and Windows (WinCVS, see http://www.
cvshome.org/cyclic/cvs/windows.html)

15

http://www.cvshome.org/cyclic/cvs/mac.html
http://www.cvshome.org/cyclic/cvs/mac.html
http://www.cvshome.org/cyclic/cvs/windows.html
http://www.cvshome.org/cyclic/cvs/windows.html

Appendix

A Overview over CVS commands

The following overview over the basic CVS commands has been adapted from the
`CVS tutorial' (http://www.loria.fr/~molli/cvs/cvs-tut/cvs_tutorial_toc.html) by
Gray Whatson.

Most of the below commands should be executing while in the directory
you checked out. If you did a `cvs checkout malloc' then you should be in
the malloc sub-directory to execute most of these commands. `cvs release'
is different and must be executed from the directory above.

cvs add and cvs remove
It can be that the changes you want to make involve a completely new
�le, or removing an existing one. The commands to use here are:

cvs add `�lename'

cvs remove `�lename'

You still have to do a `commit ' after these commands to make the ad-
ditions and removes actually take affect. You may make any number
of new �les in your copy of the repository, but they will not be com-
mitted to the central copy unless you do a `cvs add'.

CVS remove does not actually remove the �les from the repository.
It only removes them from the �current list� and puts the �les in the
CVS Attic. When another person checks out the module in the fu-
ture they will not get the �les that were removed. But if you ask for
older versions that had the �le before it was removed, the �le will be
checked out of the Attic.

cvs admin
This is the CVS interface to assorted administrative facilities. Some
of them have questionable usefulness for CVS but exist for historical
purposes. Some of the questionable options are likely to disappear in
the future. This command *does* work recursively, so extreme care
should be used.

cvs annotate
Gives you an annotated listing of the current version of a �le, contain-
ing for each line information about in which version, by whom and
when it was written. It does not contain information about deleted or
modi�ed lines (to get this, use `cvs diff' on the two versions you are
interested in).

unix> cvs annotate start.csh
Annotations for start.csh

1.1 (brandenb 22-Apr-99): ! src/start.x
1.2 (nbmvr 10-Jul-99):

16

http://www.loria.fr/~molli/cvs/cvs-tut/cvs_tutorial_toc.html

1.2 (nbmvr 10-Jul-99): -8.,8., :zmin,zmax
1.2 (nbmvr 12-Jul-99): .05,2.,1.,40060000., :rin,rqu,xboxmax,rLL
1.1 (brandenb 22-Apr-99): -.25,1.5,.1499,8, :r1,r2,height,nwidth
1.1 (brandenb 22-Apr-99): 1.,0,0,0, :mu0,B0,Bphi0,eps_quadru
1.1 (brandenb 22-Apr-99): 1.666667,.1,0., :gamma,beta,HH0
1.1 (brandenb 22-Apr-99): 0,0, :nsmooth,nsmoothrun
1.1 (brandenb 22-Apr-99): 1.,0.1, :frac1,d1mask
1.3 (dobler 12-Jul-99): 1,2.,0 :isymm,scale,iffree
1.1 (brandenb 22-Apr-99): 0.0000001, :ampl
1.1 (brandenb 22-Apr-99): EOF
1.1 (brandenb 22-Apr-99):
1.1 (brandenb 22-Apr-99): rm -f tmp/n.dat
1.1 (brandenb 22-Apr-99): rm -f t*.dat
1.1 (brandenb 22-Apr-99):
1.1 (brandenb 22-Apr-99): #
1.3 (dobler 12-Jul-99): # iffree -- initialise B force-free

cvs checkout (or cvs co)
To make a local copy of a module's �les from the repository execute
`cvs checkout module' where module is an entry in your modules �le
(see below). This will create a sub-directory module and check-out the
�les from the repository into the sub-directory for you to work on.

cvs commit
When you think your �les are ready to be merged back into the repos-
itory for the rest of your developers to see, execute `cvs commit'. You
will be put in an editor to make a message that describes the changes
that you have made (for future reference). Your changes will then be
added to the central copy.

When you do a `commit ', if you haven't updated to the most recent
version of the �les, CVS tells you this; then you have to �rst update,
resolve any possible clashes, and then redo the commit.

cvs diff
To see the differences between your version of the �les, and the ver-
sion in the repository you started from, do:

cvs diff `�lename(s)'

If you want to compare to the latest version in the repository, use

cvs diff -r HEAD `�lename(s)'

cvs history
To �nd out information about your CVS repositories use the `cvs
history' command. By default `history ' will show you all the entries
that correspond to you. Use the `-a' option to show information about
everyone.

cvs history -a -o
shows you (a)ll the checked (o)ut modules

cvs history -a -T

17

reports (a)ll the r(T)ags for the modules

cvs history -a -e
reports (a)ll the information about (e)verything

cvs import
Use `import' to incorporate an entire source distribution from an out-
side source (e.g., a source vendor) into your source repository direc-
tory. You can use this command both for initial creation of a reposi-
tory, and for wholesale updates to the module from the outside source.
*Note Tracking sources::, for a discussion on this subject

cvs init
Create a CVS repository if it doesn't exist.

cvs log
To see the commit messages for �les, and who made them, use:

cvs log `�lename(s)'

cvs login, logout
Connect to, and disconnect from, the CVS server when using the
server/client mode of accessing the repository (which we do).

cvs rdiff
Create 'patch' format diffs between releases

Builds a Larry Wall format patch(1) �le between two releases, that
can be fed directly into the `patch' program to bring an old release up-
to-date with the new release. (This is one of the few CVS commands
that operates directly from the repository, and doesn't require a prior
checkout.) The diff output is sent to the standard output device.

cvs release
When you are done with your local copy of the �les for the time be-
ing and want to remove your local copy use `cvs release module'. This
must be done in the directory above the module sub-directory you
which to release. It safely cancels the effects of `cvs checkout'. Usu-
ally you should do a commit �rst.

If you wish to have CVS also remove the module sub-directory and
your local copy of the �les then you do `cvs release -d module'.

NOTE: Take your time here. CVS will inform you of �les that may
have changed or it does not know about (watch for the `?' lines) and
then will ask you to con�rm this action. Make sure you want to do
this.

cvs remove
See cvs add.

cvs rtag
Like `tag ', `rtag ' marks the current versions of �les but it does not
work on your local copies but on the �les in the repository. To tag all
my libraries with a version name I can do:

18

cvs rtag LIBRARY_2_0 lib

This will recursively go through all the repository directories below
lib and add the LIBRARY_2_0 tag to each �le. This is one of the most
useful features of CVS. Use this feature if you are about to release a
copy of the �les to the outside world or just want to mark a point in
the developmental progression of the �les.

cvs status
Show current status of �les: latest version, version in working direc-
tory, whether working version has been edited and, optionally, sym-
bolic tags in the RCS �le. (Does not change repository or working
directory.)

cvs tag
One of the exciting features of CVS is its ability to mark all the �les in
a module at once with a symbolic name. You can say `this copy of my
�les is version 3'. And then later say `this �le I am working on looked
better in version 3 so check out the copy that I marked as version 3.'

Use cvs tag to tag the version of the �les that you have checked out.
You can then at a later date retrieve this version of the �les with the
tag.

cvs tag tag-name �lenames

Later you can do:

cvs co -r tag-name module

cvs update
To update your copy of a module with any changes from the central
repository, execute `cvs update'. This will tell you which �les have
been updated (their names are displayed with a `U' before them), and
which have been modi�ed by you and not yet committed (preceded by
an `M').

It can be that when you do an update, the changes in the central
copy clash with changes you have made in your own copy. You will
be warned of any �les that contain clashes by a preceding `C'. Inside
the �les the clashes will be marked in the �le surrounded by lines of
the form <<<<<<< and >>>>>>>. You have to resolve the clashes in your
copy by hand. After an update where there have been clashes, your
original version of the �le is saved as `.#file.version'.

If you feel you have messed up a �le and wish to have CVS forget
about your changes and go back to the version from the repository,
delete the �le and do an `cvs update'. CVS will announce that the �le
has been �lost� and will give you a fresh copy.

With option `-d', create any directories that exist in the repository if
they're missing from the working directory. Normally, `update' acts
only on directories and �les that were already enrolled in your work-
ing directory.

19

cvs edit,editors,watch,watchers,unedit
These are commands that are irrelevant for us.

B Branches

B.1 Accessing branches

CVS allows different branches of one module to be worked on simultaneously. You can
branch from an earlier version, work on that branch and �nally merge your changes
into the latest revision on the main branch.

To check out the branch labelled `S-const-branch ' of module `test ', type

work/test> cvs update -r S-const-branch

(or `cvs co -r S-const-branch' if you do not have a working copy).

If you now commit changes, they will be saved on the branch `S-const-branch ':

work/test> cvs commit
[. . .]

work/test> cvs status
===
File: start.csh Status: Up-to-date

Working revision: 1.32.2.3
Repository revision: 1.32.2.3 /var/local/cvsroot/test/start.csh,v
Sticky Tag: S-const-branch (branch: 1.32.2)

[. . .]

The version number 1.32.2 is the number of the branch that was split off revision
1.32. Note that the branch tags stick to the branch (i. e. checking out the version with
the tag `S-const-branch ' will always give you the latest version on that branch), while
revision tags are tied to one revision (like e. g. 1.32), although you can update them if
you like.

`cvs log' lists you the tags, including branch tags:

work/test> cvs log start.csh
RCS file: /var/local/cvsroot/test/start.csh,v
Working file: start.csh
head: 1.35
branch:
locks: strict
access list:
symbolic names:

S-const-branch: 1.32.0.2
pre-S-const-branch: 1.32

keyword substitution: kv
total revisions: 38; selected revisions: 38

20

description:

revision 1.35
[. . .]

revision 1.32
branches: 1.32.2;
[. . .]

B.2 Creating branches

[from the FAQ]:

Suggested technique:

1. Attach a non-branch tag to all the revisions you want to branch from (i. e. the
branch point revisions).

2. When you decide you really need a branch, attach a branch tag to the same
revisions marked by the non-branch tag.

3. �Checkout� or �update� your working directory onto the branch.

Schematically, this means

(Write information about tags-to-come to Tags.list and commit)

unix> cvs rtag <branch_point_tag> <module>
unix> cvs rtag -b -r <branch_point_tag> <branch_tag> <module>
unix> cvs checkout -r <branch_tag> <module>

The �rst step refers to the case where you are keeping a list of tags in a �le `Tags.list ';
you should update this �le before you branch, so the information about the branch
points is up to date on both trunk and branch.

C Tips, tricks and troubleshooting

C.1 User level tips and tricks

How can I checkout a directory without getting all its subdirectories? Use
the `-l' �ag of checkout (or update) to avoid recursion through the directory tree:

unix> cvs co -l -d runs pencil-runs

To only get a sparse tree, say runs/forced/halo1/, you will have to apply this tech-
nique sequentially:

unix> cvs co -l -d runs pencil-runs
unix> cd runs; cvs up -dl forced
unix> cd forced; cvs up -dl halo1

The combination of `-l' and `-d' creates subdirectories without recursing.

21

runs/forced/halo1/

My cvsroot has changed (new server name, . . .) � how do I update my

checked out copies?

For each copy, cd to the top directory, then do

unix> oldroot=’:pserver:USER\@OLD.HOST.DOM:/OLD/PATH’
unix> newroot=’:pserver:USER\@NEW.HOST.DOM:/NEW/PATH’
unix> find . -path ’*CVS/Root’ \

| xargs fgrep -l "${oldroot/\\\\@/@}" \
| xargs perl -i.bak -pe "s{$oldroot}{$newroot}"

where (you guessed it) you replace all uppercase names and paths with real stuff. If
you run this once, it creates a backup `Root.bak ' of each `Root ' �le it adapts. When
running a second time, however, the �rst backup will get overwritten.

C.2 Administration

C.2.1 Problems with the CVS pserver

Here is a checklist that proved useful.

1. Have you set up your repository correctly?

cvs -d /home/User/CVS init (or wherever the repository should go)

You do need the `-d . . . ', since otherwise CVS takes the value from CVSROOT�
which points to a directory that is not yet set up for CVS.

If you try to cvs login, but get no connection:
cvs [login aborted]: connect to ...:2401 failed: Connection refused

2. (From the Cederqvist manual)
Try

telnet servername 2401

After connecting, send any text (for example "foo" followed by return). If CVS is
working correctly, it will respond with

cvs [pserver aborted]: bad auth protocol start: foo

3. Does your system know about the service cvs? If `/etc/inetd.conf ' operates with
service names instead of port numbers (i. e. if the �rst entry of each inetd line is
a name, rather than a number) your cvs entry there,

cvspserver stream tcp nowait root \
/usr/local/bin/cvs cvs --allow-root=/home/User/CVS pserver

� then `/etc/services ' must de�ne the service cvspserver:

cvspserver 2401/tcp

to tell inetd to start cvs when there is a request on port 2401.

4. Have you restarted inetd after changing `/etc/{inetd.conf,services} '?

22

Linux> /usr/bin/killall -HUP inetd
IRIX> /sbin/killall -HUP inetd

5. Verify your tcp wrapper settings (see `man hosts_access', `man hosts_options' un-
der Linux):

Linux> /usr/sbin/tcpdmatch cvs localhost
IRIX> /usr/etc/tcpdmatch cvs localhost

If access is `granted', this part of the setup is OK. If access is `denied', set up
your `/etc/hosts.{allow,deny} ' correctly

If you try to cvs login, but get an authorisation error:
cvs [login aborted]: authorization failed: server ... rejected access

6. Have you set up a password �le `passwd ' in `/home/User/CVS/CVSROOT '?

7. Is the CVS repository correctly speci�ed in both, `/etc/inetd.conf ' and your envi-
ronment variable? The tilde does not work here, thus

cvspserver ... cvs --allow-root=~User/CVS

must be replaced by

cvspserver ... cvs --allow-root=/home/User/CVS

if User 's home directory is `/home/User '.

Similarly, in your �/.cshrc �le, you should use

setenv CVSROOT :pserver:$USER@server.domain:/home/User/CVS

8. Check the system log �les (`/var/adm/SYSLOG ' under IRIX;
`/var/log/{message,syslog,} ' under Linux) for why inetd rejected the access

Weirder problems

9. You receive a complaint about an unrecognised option:

cvs [login aborted]: unrecognized auth response from ...: \
cvs: unrecognized option ‘--allow-root=...’

Are you running version 1.9 or older of CVS? In that case, cvs does not under-
stand the --allow-root option. Just drop it.

�Written July 2, 2006 by Wolfgang Dobler <Wolfgang.Dobler@ucalgary.ca> �

23

<Wolfgang.Dobler@ucalgary.ca>

	What CVS does
	Nomenclature
	Getting help
	Environment variables
	A sample session
	Tags and revision numbers
	Conflicts
	Flags issued by `update'
	CVS/RCS Keywords
	Creating a repository
	Nota Bene
	My top ten CVS commands
	Other user interfaces
	Overview over CVS commands
	Branches
	Accessing branches
	Creating branches

	Tips, tricks and troubleshooting
	User level tips and tricks
	Administration
	Problems with the CVS pserver

