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1 Introduction

Astrophysicists have grown accustomed to Thomson-scattering effects. For
example, in view of the 1981 total eclipse it is timely to recall that when
we observe the solar corona we are looking at photospheric radiation,
scattered (and polarized) by coronal electrons. Scattering contributes strongly
to the opacity of matter in stellar interiors, and it proves to be an important
factor in the photospheres of hot giant stars.
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In all these situations the frequency change that the photons undergo as
they are scattered has generally been neglected. The only occasion to allow
for the frequency shift in classical theoretical astrophysics has been in
treating the influence of electron scattering upon emission and absorption
line profiles in the spectra of celestial bodies. Dirac in 1925 calculated the
broadening of an emission line due to scattering by Maxwellian electrons.
Chandrasekhar discussed in his classic book (1950) the problem of how
an emission spectrum will evolve as the photons lose energy by recoil
when they are scattered by free electrons.

If photons of energyT hv < mc? are scattered by Maxwellian electrons
having kT, < mc?, the frequency shift will be very small [Av/v ~
+v,/c ~ (kT./mc?)'? because of the Doppler effect, or Av/v ~ —hv/mc?
through recoil]; but if the scattering process is repeated many times, the
small amounts of energy exchanged between the electrons and photons
can build up and give rise to substantial effects.

In hot, rarefied plasma, multiple scattering will control the rate of energy
exchange between the electrons and the radiation field, and will generate
certain specific emission spectra. The energy losses to bremsstrahlung and
to recombination radiation are in fact proportional to the square of the
plasma density, whereas the Thomson scattering probability is proportional
only to the density itself, so in order for Compton losses to predominate
the plasma must be tenuous. Moreover, for free-free absorption the Rosse-
land cross section is proportional to T, *. Clearly Comptonization will be
dominant in high-temperature plasma.

Thomson scattering conserves the number of photons (for the time being
we shall neglect photon production by the double Compton effect; see Sec.
4.3); hence in the problem at hand we cannot do without extra photon
sources. Photons could be supplied, for instance, by the plasma’s own
bremsstrahlung or cyclotron radiation, by the double Compton effect, by
the synchrotron radiation of relativistic electrons in magnetic fields con-
centrated in the same volume, or by the emission of a central source that
contains denser plasma. These photons will be redistributed over the spec-
trum. If 4kT, > kv, then energy will be withdrawn from the electrons and
transferred to the photons; conversely, if kb = 4kT, the radiation will serve
to heat the electrons, as exemplified by Figure 1. In the event of a very
large optical depth, the Comptonization process will result in a Wien

+Throughout m denotes the electron mass; ¢, the velocity of light; k, k, the Planck and
Boltzmann constants.
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Figure 1 Profiles of the iron x-ray line at hv, = 6.4 keV after a single scattering by
Maxwellian electrons of specified temperature (nonrelativistic plasma). When hv > kT, the
profile broadens and shifts downward along the energy axis, mainly because of the recoil
effect. In the range 44T, < hv < (kT, - mc®)'?, the Doppler effect broadens the lines but the
recoil effect lowers the average energy of the photons. For hv < 4T, the Doppler effect
raises the average photon energy during the scattering process and the right wing of the line
becomes stronger than the left one. The radiation serves to withdraw energy from the electrons
(see Sec. 3.3.3).
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radiation spectrum having the specified number of photons and a radiation
temperature 7, = T,.

A vital step forward in developing the theory of Comptonization was
taken in 1949, when Kompaneets (1956) derived the kinetic equation that
describes how the radiation field will interact with Maxwellian electrons.
Then in the 1960s detailed studies were made of the inverse Compton
effect, wherein the Doppler effect raises the energy of low-frequency
photons undergoing single scattering by ultrarelativistic electrons (Ginz-
burg and Syrovatskii 1974, Felten and Morrison 1966, Jones 1968, Blu-
menthal and Gould 1970). This process has turned out to be one of the
chief mechanisms in high-energy astrophysics for producing hard radiation
spectra.

When the primordial background radiation that permeates the whole
universe was discovered it became clear that Comptonization—the change
in the spectrum of radiation due to multiple scattering of photons by thermal
electrons—must have played a crucial role in interactions between matter
and radiation in the early universe (Weymann 1967, Zel’dovich and Syu-
nyaev 1969, Syunyaev and Zel’dovich 1970, Illarionov and Syunyaev
1974a, b). The process captured the interest of physicists as well (Wood-
ward 1970, Cooper 1971).

Cosmology confronts the researcher with a problem in which the plasma
and radiation-field parameters are independent of the coordinates: they
depend only on time. For this homogeneous problem a number of most
important results have been obtained to show how radiation spectra should
evolve [see the reviews by Danese and De Zotti (1977) and by Syunyaev
and Zel’dovich (1980)].

It was soon realized that Comptonization also plays a most important
part in molding the spectra of compact x-ray sources (Zel’dovich and
Shakura 1969, lllarionov and Syunyaev 1972, Felten and Rees 1972).
These objects furnished astrophysicists with conditions perfect for Comp-
tonization to work: high temperatures (K7, = 1-100 keV), plasma having
a large depth with respect to Thomson scattering (7; = 1-100), and avail-
ability of photon sources (dense plasma zones, intrinsic bremsstrahlung
from the plasma, gyroline emission).

In the first attempts to calculate the spectra of x-ray sources (Zel’dovich
and Shakura 1969, Illarionov and Syunyaev 1972) the results of the ho-
mogeneous problem (applicable to cosmology) were carried over in naive
fashion to the context of spatially bounded plasma clouds, where the
principal role is played by the distribution of photons with respect to their
time for escape from the source. The photons in such a cloud will suffer
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differing numbers of collisions, with decisive effects upon the spectrum
of the radiation produced by Comptonization and emerging from the plasma
cloud—a situation illustrated in Figure 2.

Valuable progress was made when it was understood that the radiation
spectrum formed through Comptonization of low-frequency photons in a
hot thermal plasma cloud may be described by a power law (Katz 1976,
Shapiro et al. 1976; Pozdnyakov et al. 1976, 1977; Syunyaev and Titarchuk
1980). It was found that Comptonization by Maxwellian electrons can
explain the power-law x-ray spectra observed in galaxy nuclei and quasars
(see Figure 3). If we should now observe a power-law radiation spectrum
somewhere, we no longer have to call it nonthermal and seek mechanisms
for accelerating relativistic particles with a power-law energy distribution.
The hot Maxwellian plasma in accretion disks (Figure 4) or in material
infalling toward neutron stars might well give rise to power-law radiation
spectra. For kT, <€ mc?, 71 > 1, and in the ultrarelativistic case for kT, > mc?,
7r < 1, these spectra are adequately described by the analytic expressions
set forth in Sec. 4 of this review. In mildly relativistic plasma (kT, ~ mc?),
however, it is hard to treat the problem analytically.

One finds that the required spectra of plasma with kT, ~ mc? can be
simulated more easily by the Monte Carlo method. The exposition of the
Monte Carlo technique given in Sec. 9 will, we trust, enable anyone
interested to retrace our path and to explore further the operation of Comp-
tonization processes. t

To conclude this Introduction let us summarize the chief astrophysical
objects where the spectrum formation mechanism that we shall discuss
should be able to work (Figure 5).

The first example is an accretion disk around a black hole. The plasma
flowing over from the companion star or entering the black hole from
surrounding space will have a pronounced angular momentum. As a result
it will not fall in radially, but at a certain radius it will form a gaseous
ring around the gravitating center. Turbulent viscosity will spread the ring
out into a disk, whose material will move toward the gravitating center
along gradual spiral trajectories. During this motion gravitational energy
will naturally be released, heating the disk surface to high temperatures
(Pringle and Rees 1972, Shakura and Syunyaev 1973). Many astrophys-
icists believe that disks of just this kind are responsible for the x rays
emitted by the source Cygnus X-1 (Liang and Price 1977, Eardley et al.

TWe are indebted to the Polish scientist W. Wielczewski for an important remark which
enabled us to improve the calculation procedure described in Sec. 9.
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1978) as well as by quasars and galaxy nuclei (Lynden-Bell 1969, Lynden-
Bell and Rees 1971, Shakura and Syunyaev 1976, Lightman et al. 1978).
The x rays would be generated in a zone smaller than 10 R, [a black hole
of mass M will have a gravitational radius R, = 2GM/c* = 3(M/Mo)
km]. Maximum energy release should occur within the belt 5 < R/R, < 10,
and the disk should have there its smallest optical depth for Thomson
scattering (Shakura and Syunyaev 1976, Syunyaev 1983). Disk accretion
is a highly efficient mechanism for producing energy: as the accreting
matter falls inward about 10 percent of its rest mass will be liberated as
radiation. Even so, in order to yield as much energy as we observe in,
say, the quasar 3C 273, about one earth mass would have to fall into the
black hole every three seconds.

When disk accretion takes place onto a neutron star with a comparatively
weak magnetic field (H < 10'° gauss), half the energy released will be
emitted by the extended accretion disk but the other half will come from
a narrow boundary layer near the surface of the star, within which the
velocity of the infalling material drops from the Keplerian value
v, = VGM/R = 80,000 km/sec to the relatively modest rotational speed
of the spinning stellar surface. It is in this layer that the plasma will reach
its highest temperatures coupled with comparatively low density, and
Comptonization will proceed efficiently. At the same time the neutron-
star surface will act as a source of the low-frequency photons required to
carry off energy by Comptonization. One interesting feature of the process
is that some of the energetic photons from the hot zone will diffuse down
into the dense zones of the neutron-star atmosphere, heating them. The
atmosphere will then give off this extra energy in the form of low-frequency
radiation.

If the magnetic field of the neutron star is strong enough (H = 10"
10" gauss), it will halt the accreting stream at large distances from the
star and will channel the accretion, directing the flow toward the magnetic-
pole regions. Close to the surface the material will speed up to = 0.4c;
the kinetic energy will be liberated in a shock wave, where Comptonization
will take place (Basko and Syunyaev 1976, Lyubarskii and Syunyaev
1982).

Hot plasma zones should also develop in the shock waves formed near
the surface of a white dwarf undergoing spherically symmetric accretion
(DeGregoria 1974, Katz and Salpeter 1974, Fabian et al. 1976, Kylafis
and Lamb 1979) and in an expanding supernova envelope (Weaver and
Chapline 1974, Colgate 1975, Imshennik and Morozov 1981); indeed
anywhere that we find rarefied, high-temperature gas, Comptonization
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Figure 2 The distribution P(u) of photons with respect to their escape time from a spherical
plasma cloud whose Thomson-scattering optical depth 7 = 10 (Syunyaev and Titarchuk
1980). @) The cloud has a central photon source which at time ¢ =0 emits a momentary
pulse of radiation. The number u = oN,ct of scatterings which the photons undergo in the
cloud represents a dimensionless time. b) Dependence of P(u) on the distribution of photon
sources: (I) source at center of cloud; (2) sources distributed uniformly over cloud; (3) cloud
embedded in an external field of isotropic low-frequency radiation whose photons enter the
cloud and are scattered several times before leaving it. Significantly, the asymptotic curves
for large u are entirely similar in all cases; it is this limiting P(x) relation which produces
the power-law radiation spectra that result from Comptonization (see Sec. 4.1).
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should be the primary mechanism for relieving the electrons of their energy
and forming the radiation spectrum.

One should take multiple scattering, and thus Comptonization, into
account even when considering the inverse Compton effect of low-fre-
quency photons upon the relativistic electrons present in the radio-emitting
clouds in radio galaxies and quasars (Rees 1967).

A final word about the geometry of the plasma clouds. We shall deal
with isothermal flat disks and spheres of uniform density (Figure 6a). The
low-frequency photon sources then may be located in the central plane of
the disk (or at the center of the sphere), or they may be distributed uniformly
throughout the disk or even outside (Figure 6b). It is interesting to find
(Sec. 4.2.2, Figure 26) that the hard-radiation spectrum resulting from
Comptonization is insensitive to the spatial distribution of the low-fre-
quency photon sources.

2 Basic Equations
2.1 Compton Scattering

Assume that a photon of energy hv and momentum (hv/c){Q is scattered
by an electron of energy ymc? and momentum p = ymv, withy = (1 — v¥
)12 Let hv' and (hv'/c)Q2’ denote the energy and momentum of the
photon after the scattering event.

2.1.1 Photon Frequency Shift By introducing the electron and photon
four-momenta p, = (p’, iymc), k, = (hv§}/c, ihv/c) prior to the scat-
tering event and p, = (p’, iy'mc), ky = ('€} /c, ihv'/c) afterward, one
can easily find how the frequency of the photon will change when it is

Figure 3 A simulation of the x-ray spectrum of the quasar 3C 273. The x rays are regarded
as generated by Comptonization of low-frequency blackbody radiation of temperature k7, = 0.05
keV (except for the top curve, for which T, = 0.005 keV) in an accretion disk containing
hot Maxwellian electrons (T, > T,). In these calculations the photon sources are confined to
the central plane of the disk. Each spectrum is labeled with the electron temperature and the
disk optical depth with respect to Thomson scattering. In the classical x-ray range (2 < hv < 20
keV) the spectrum obeys a power law for every case computed: the spectral flux density 7,
[Jy] < v™*, in agreement with the HEAO A2 measurements (Worrall et al. 1979). For
hv > 34T, the spectrum approaches the Wien law I, « v* exp (—hv/kT,). As T, rises, the
spectrum hardens and its power-law segment becomes larger. One can evaluate T, only from
measurements in this high-energy range (hv > 3kT,); the data presently available (220 keV)
are inadequate to determine either the temperature or the optical depth of the radiating plasma.
Figure 27 (Sec. 4.2) shows the results obtained by calculating the angular distribution of
photons emerging from a disk with the same 7, and 7, values as in the third curve of this
figure, for several energy ranges, while Figure 30 illustrates how the hard radiation of a disk
will be polarized (as calculated in the Thomson approximation). Polarization effects have
been neglected in calculating these spectra; while they would alter the numerical results, the
qualitative behavior would remain the same.
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Figure 4 Crosses, the x-ray spectrum of Cygnus X-1 according to balloon measurements
by J. Trimper’s group at the Max-Planck-Institut near Munich. Curve, analytic solution
obtained by Syunyaev and Titarchuk (1980) for a = 0.57, y = 2, kT, = 26.5 keV. For a
disk geometry, the corresponding Thomson-scattering optical depth of the disk would be
7o = 2 (see Sec. 4.1); for spherical geometry, 7, = 5.
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|

T

Figure 6 a) Geometry of the rarefied plasma clouds (a disk and a sphere) on which the
calculations are based. b) Several cases illustrating the spatial distribution of low-frequency
photon sources: outside a disk, in its central plane, and uniformly distributed over the disk.

scattered [see, for example, Akhiezer and Berestetskii (1969)]. In fact,

ps + ki = pi + ki 2.1

Squaring this relation and noting that p? = p;>? = —m?c? while k& =
22 = 0, we see that

psks = pik;. (2.2)

On the other hand, if we multiply Eq. (2.1) by k; we find

piks = piky + kiki, (2.3)
or by Eq. (2.2),

piky = piky + kik;.

Definingp = Q - v/v, p' = )’ - v/v, and the scattering angle @ = cos™'
(€2 - '), we may therefore write

_ 1 - pv/c
1 — p'vic + (hv/yme?)(1 — cos o)’

(2.4)

< | =
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If the photon is scattered by an electron at rest (v = 0), its frequency
will change solely because of the recoil effect:

v 1

— = . 2.5

v 1+ (hw/mcH(1 — cos a) (2:5)
In the case of a photon with hv < mc? we will have Av/iv = — (hw/

mc)(1 — cos a). If instead the electrons are traveling at high speed, the
Doppler effect will play the dominant role in changing the frequency of
low-energy photons. For in a reference frame comoving with the scattering
electron, the photon frequency prior to the scattering event will be

= yw(l — wv/c), and if hvy, < mc?, we may neglect the frequency
shift of the scattered photon in the electron rest frame: v; = v,. Reverting
to the laboratory reference frame, we obtain-

- v6, - vol =v.1—p.’v/c, 2.6)
vy — p'vic)  y(1 — p'v/c) 1 — p'v/e

which will agree with Eq. (2.4) if the condition Av/ymc? < 1 holds. In
the nonrelativistic limit v/c < 1, Eq. (2.6) gives

2

vV—-v v v,
=—(n —p+ 5 2.7
c C

v

2.1.2  Scattering Cross Section The differential cross section for Comp-
ton scattering is expressed by the formula [see, for example, Akhiezer and
Berestetskil (1969)]

N\ 2
do X <_> 2.8

X —x—,+f—+4<1—i,>+4<—1—
X X



202 L. A. POZDNYAKOV, I. M. SOBOL’ and R. A. SYUNYAEV

r, = €*/mc? is the classical electron radius. In the nonrelativistic limit,

% = %3(1 + cos? a). 2.9

The total scattering cross section is given by the Klein—Nishina formula:

2mr?
0'=
X ,
4 8 1 8 |
X [(1 —;—;z)ln(l +x)+§+;—m:|. (2.10)

In particular, in the nonrelativistic limit (x < 1)

o= %T—Trf(l —x) = or(l ~ x), (2.11)

while in the ultrarelativistic case (x > 1)

g =2nrx"(Inx + 3). 2.12)

2.1.3 Photon Free Path The probability that a photon will be scattered
within a path of length di by a directed beam of electrons having a density
N.(v) and moving at velocity v is expressed by

dr = (1 - u%)a(x)Ne(v) dl 2.13)

[see, for example, Jauch and Rohrlich (1955), Akhiezer and Berestetskii
(1969), Landau and Lifshits (1976)]. In view of the factor (1 — pw/c) the
effective cross sections

I O W P R )
Cett = <1 " C)U'(x), 0 (1 I c) Y 2.14)

are often introduced, with o(x) given by Eq. (2.10) and do/dQ’ by Eq.
(2.8). -
From 'the scattering probability one can readily calculate the mean free
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path \ of a photon in plasma whose electrons have any desired isotropic
distribution N,(v) with respect to momentum:

- f " N.o)dp
- 0
A

(2.15)

© 2aN, f " N.ow? f 'o@ — wulodp. dp
0 1

When we evaluate the expression (2. 15) for the simplest case, a Maxwellian
electron velocity distribution, we obtain the results presented in Table I
and in Figure 7.

Several simple asymptotic relations can be derived (see also the expan-
sions in the Appendix). In the case hv <€ mc?, kT, < mc?, if we substitute
into Eq. (2.15) the cross section (2.11) and the distribution
N,(p) = N,(2mwmkT,)~3? exp (—p*/2mkT,) and then integrate, we find that

/N = aN,[1 — 2(hv/mc® — 5(hv/m KT/ mcd].  (2.16)
In the limit where AvkT, < (mc?)? but kT, > mc?, we again take the cross
section (2.11) and adopt a Maxwellian distribution N,(p) = BN, exp ( —ymc?/
kT,) for the ultrarelativistic electrons (so that (ymc?) = 3kT,), obtaining

/N = oNJ1 — 8(hv/mc)(kT,/mc?)]. (2.17)

Here B is a normalizing constant, depending only on T.,.

In the ultrarelativistic limit kv > mc?, kT, > mc?, if we write the cross
section in the form (2.12) and assume that the electrons have a Maxwellian
distribution, we find that

1

mc? mc? [ln < hv kT,

3
= L g N—
16 7TV mc? mc?

Too77|. e
T, ) 0077] (2.18)

And finally, in the event that Av 3 mc? but kT, < mc? we will have

1 3 2( 2w 1 KT, 3 kT
=§01Nﬂi—<ln—z+—+ )(1—5 ) 2.19)

(4
A mc> 2 mc? mc?

The mean free path will lengthen markedly as the plasma temperature rises.
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Figure 7 The mean free path' Awith respect to Compton scattering for a photon of energy
hv in a Maxwellian plasma of temperature kT.. All the curves are normalized to the free path
Ar = 1/0:N, computed in the Thomson approximation. The inset demonstrates that the
corrections to the Thomson path length depend linearly on the plasma temperature for kT,/
met < 1.

2.2 Energy Exchange between Plasma and Radiation during Scattering

When photons are scattered by electrons with a Maxwellian momentum
distribution, the average relative change in the photon frequency will be

Av _ X’f LAY | R di,Ne(p)pde dQ dQ', (2.20)
v c/ dQ)

where v'/v is expressed by Eq. (2.%) and the photon mean free path \ by
Eq. (2.15). This frequency shift will be calculated presently for the non-
relativistic limiting case hv <€ mc?, but first we give a simpler derivation
of the quantity Av/v, valid in the event that hv < kT,.

2.2.1 Braking of Electron by Radiation Field Consider an electron trav-
eling at velocity v in a field of isotropic radiation with a blackbody spectrum
corresponding to temperature 7,. Let the electron interact with the radiation
by the Thomson scattering process. Because of the Doppler effect the
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electron will perceive that the temperature of the radiation depends on
direction:

T;
Ty - pevic) (2i21)

the angle p, being measured in the electron rest frame.
The radiation-pressure force exerted on the electron will be directed
opposite to v and equal to

2o T

g o
7= 72 = 7 [ oy =

f popodo,  (2.22)

where ¢ = [I(po)od 2, represents the radiant energy flux incident on the
electron; I = [§1,dv, with I, the blackbody radiation intensity.

We now introduce the radiant energy density &, = bT§, where b is the
Stefan-Boltzmann constant. In the electron rest frame

bT* bT¢
= — = s 2.23
4me  4mey'(l — pgv/c)’ 2.23)
so thatt
oré; (1 Podiko 4 v
gl i I .2 o LW I 2.24
P =y | A= gl 39 2.2

The force (2.24) acts on the electron not only in its rest frame but also in
the laboratory system, in which the radiation field is isotropic.

In the nonrelativistic case, v < ¢,y = 1, and f = —m dv/dr; we will
have
dv 4 ]
— = — - o6, 2.2
" 3 g 225

+This result clearly holds true whatever the spectrum of the radiation field.
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Multiplying both sides of Eq. (2.25) by v, we obtain

d {mv? 8 o6, [ mv?
=) =-I==); 2.
dt<2) 3mc<2>’ (2.26)

thus the energy of the electron will decay exponentially as

. |
E =E, exp<— ggfj t) .27)

with a characteristic time scale t. = # mc/oE,.

Equation (2.26) can readily be averaged over a Maxwellian electron
velocity distribution. The averaging is equivalent to replacing mv?/2 by
the mean particle energy 3k7,. Then

e 8 oM

dt 3 mc?

so that the electron temperature will fall off as T, = T, exp(—¢/t,). But
as the electrons cool the radiation energy density will rise:

dE, _ 3, d(kT) _ dor8.NAT,

dt 2°° ar mc

and accordingly, provided T(tf) = const,
4o N KT,
&, = 6 exp(L t>. (2.28)
me

The photon—electron collision frequency is equal to oN,c, and the
number of photons will be conserved. Equation (2.28) therefore states that,
on the average, the energy of a photon will increase by

Av kT
—_— = 4 M €
v mc?

(2.29

every time it collides with an electron.
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In the relativistic case, f = d(ymv)/dt,

d d
4 VT T mey _ dy

l = —/———,
dt \/'y2 - 1 dt
and by Eq. (2.24)
dy =406,
—_— = - — - 1. 2.30
& 3 e ¢y ) (2.30)

Equation (2.30) has a solution of the form y = [1 + A(®))/[1 — A(@)],
where

Yo — 1 8 046, vo — 1 t
A = ST =X e -] @31
® Yo + lexp( 3 me ) Yo t+ lexp< tc) ( )

(Yo denotes the initial y-factor of the electron).

For the ultrarelativistic case v > 1, Eq. (2.30) reduces to the familiar
expression for the rate of energy loss by a relativistic electron in an isotropic
radiation field:

— Yo _ Yo
1 + (do16,¥o/3me)t 1 + yot/2t,

Y (2.32)

As to the radiation energy density (recall that for monoenergetic electrons
mc™N, dy/dt = — d&./dr), according to Eq. (2.30) it will grow exponen-
tially:

o Ne(y* — 1),

W

g@
dt
so that

&, = & exp[s ofNc(y? — D1l (2.33)
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In each scattering event the photon energy will increase, on the average,
by an amount such that

vio= [l + 4y - 1] (2.34)

Equation (2.34) agrees both with the nonrelativistic law (2.29) and with
the familiar ultrarelativistic expression

v = $uyl (2.35)

One can easily average Eq. (2.34) over a Maxwellian distribution; the
result is expressed by Eq. (2.43) below. Figure 8 demonstrates how the
two mean values v'/v and vy increase with kT,.

2.2.2 Energy Exchange: the Case hv < KT, <€ mc*> Equation (2.29)
can also be obtained by calculating the mean value (v' — v) directly. First
let us take the case of a beam of low-frequency photons interacting with
monoenergetic, isotropically distributed electrons. Then the quantity

1 v , av
W -v) = o f(l - W )dﬂ’ ' - 1dQ dQ) —. (2.36)
Using Eq. (2.4), we may rewrite Eq. (2.8) in the form
do 1 L[ 1 — cosa ?
dQ’  2¥? YA(1 — pv/e)1l — p'v/c)

X1 ~ cos a)?
YA(mcH*(1 — p'viol — w'vic + (hv/ymc)(1 — cos )]

1 2
X . .
(1 -~ p'v/e + (hv/ymc®(1 — cos a)) @37

In the Thomson limit we may neglect the recoil effect, omitting the (hv/
ymc?)(1 — cos o) terms; then

do r

dQ)’ 2y

1 — cos 2 1
X [1 + (1 - 'yz(l _ }LU/C)(I _ H-,U/C)) ] (1 _ }L’U/C)z‘ (238)
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Figure 8 The average change v'/v in the frequency of monochromatic photons scattered
by hot Maxwellian electrons and the mean energy ¥ of the electrons in the Maxwellian
distribution, as functions of the electron temperature. The calculations have been performed
for various hv/mc? ratios. When hv < kT,, the predominant effect is the Doppler increase
in frequency. On the contrary, if hv > kT, the frequency will decrease, due to the recoil
effect. The curves for hv/mc* = 107% and 10~2 differ: in the first case the calculations agree
perfectly with the Thomson approximation [Eq. (2.26)], while in the second case the effects
described by the Klein-Nishina formula become significant.

Since the scattering angle « satisfies the relations

cosa = pp’ + V1 — u?VI1 - p'2cos (¢ — ¢’), (2.39a)

©+2m
f cos o do' = 2mpp’, (2.39b)

¢

427
J"P costade’ = mw@Bu't+ 1 — p2 — p'?d,  (2.39)

¢
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2m
fﬁ cos’ a do’ = w5 — 3’ — 3pp”® + 3pp’), (2.39d)

¢

we can evaluate the integral (2.36) and several others to follow. It is
convenient first to replace the d€2’ integration by a dj.'de’ integration and
then to integrate over all directions of the electrons, that is, over dw deo.
If in Eq. (2.36) we take v'/v as given by Eq. (2.6) and use a differential
cross section of the form (2.38), then the answer will have the form

' _ 2
v —v _4 (2) 7 = ‘g‘(yz ~, (2.40)

v 3 \c

which naturally agrees with Eq. (2.34).

We would emphasize that the results given in this paragraph presuppose
only that the electrons are distributed isotropically with respect to direction;
the radiation may be as highly directive as desired. In deriving Eq. (2.34),
however, we assumed that the radiation was isotropic; that result holds
for a single electron traveling at velocity v.

It is also worth noting that if we integrate the expression (2.36) for a
Rayleigh scattering function

do r
= _ L 2
0 -2 (1 + cos®* a)

[corresponding to Eq. (2.38) when v = 0], we will not obtain the correct
answer even if v/c < 1.

Equation (2.30) enables us to find the rate at which energy will be
withdrawn from plasma by Comptonization of low-frequency radiation,
whatever the electron temperature may be. For this purpose Eq. (2.30)
has to be averaged over the relativistic Maxwellian distribution

AcpPe

/\(\ dNe = = ey (mc?)?

dp = Ay(y? — 1) vdy, 2.41)

where A is a normalizing factor and the quantity n = kT,/mc?. In this
manner we find that

"

d§, :
—_r _ _ch2@=4

N o T )
& e p 301&6 (v ) (2.42)
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Here the mean values

fx ,Y(,yz _ 1)3/26—'ynd,y
1

(o -1 = = 3+ ), @43)
[ 9o = ey

fw ,YZ(yZ _ 1)1/Ze—ynd,y
i _ 3n3(1/n) + Ky(1/n)

= Jw vy — 1)i2e= gy - 2n¥,(1/n) + 3(0(1/}1),
1

(2.44)

where the Macdonald functions X,(1/n) are tabulated, for example, in
Abramowitz and Stegun’s handbook (1964). Equations (2.43), (2.44) re-
duce to the standard relations (y> — 1) = v*/c*> = 3n, (y) = 3n + 1 in
the nonrelativistic case and (y?) = 12nr? in the ultrarelativistic case, since
{y)=3n. Table II gives the values of these two quantities computed for a
range of n; notice how quickly they approach the ultrarelativistic limit as
n increases.

Table I Mean Electron Energy Parameters

_ kT,

" e o) o - 1)

0.025 1.04 0.08 2 67
0.05 1.08 0.17 2. 63
0.1 1.17 0.38 . .6#
0.2 1.36 0.94 2. 82
0.3 1.58 1.69 g
0.4 1.81 2.65 Y
0.5 2.05 3.83 3 49
0.6 2.30 5.22 34
0.7 2.56 6.85 L
0.8 2.83 8.71 S
1.0 3.37 13.1 2
1.2 3.93 18.5 3
1.5 4.78 28.2 3
2.0 6.22 49.3 L0
3.0 9.15 109 2
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2.2.3 TheCasekT. <<hv <mc? Using the Rayleigh scattering function
we obtain in this case

GV ow_ (v _\do o _ W
- f 1) d = =% (245)

v Lo g v

since v'/v = 1 — (1 — cos a)hv/mc? [see Eq. (2.5)].

2.2.4 The Case hv < mc?, kT, € mc? The energy exchange due to
the recoil and Doppler effects will be small in this nonrelativistic case:
Av/v < 1. The two effects are independent and to a first approximation
combine linearly, so that

(v' —v) 4T, — hv

2

(2.46)
v mc

2.3 Radiation-Pressure Force

2.3.1 Eddington Luminosity Limit Many x-ray sources have a lumi-
nosity approaching the critical Eddington value. Suppose that an electron
is located at distance R from an object of luminosity L and mass M; then
the radiation pressure will exert on it a force

L R
t“=5’C—T = T (2.47)

1= 4R R

where g = L/4mR? is the flux density of radiant energy. A proton, on the
other hand, will be subject to a gravitational force fy,y = — (GMm,/RH)R/
R. One may neglect the radiation-pressure force on the proton, since its
scattering cross section '

8w e\ m\’
o,=—\l—] =|—]@o
3 \m? m,) "
is insignificant; and the attractive force exerted on the electron will also
be very small, as its mass is small. The electrons and protons in ionized
hydrogen plasma are bound together by electrostatic forces, and charge

separation is practically impossible. Both the forces mentioned above may
be regarded as being applied to electron—proton pairs. Both, remarkably
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enough, fall off as R ~? and are oppositely directed. They will be comparable
to each other if

4nGMm,c _ 2mRm,c
O Or

Lcr =

M
= 1.3 X 10® — erg/sec. (2.48)
Mo

This is the critical luminosity, the Eddington limit.

If L > L, no accretion can occur; radiation pressure will overwhelm
the gravitational forces and should cause material to flow outward. If
L < L the light pressure may be neglected; material can be accreted, and
stars with internal energy sources and stable atmospheres can exist.

In plasma whose chemical elements have the normal cosmic abundance,
there will be (1 + X)/2 =~ 0.85 electron for each nucleon (X represents
the proportion of hydrogen by mass, and we assume here that complete
ionization of helium and heavy elements will yield one electron for every
two nucleons). The plasma pressure force will accordingly diminish by 15
percent, raising the value of the critical luminosity.

2.3.2 General Equation for All hv and kT, Equation (2.47) for the
radiation-pressure force holds in the limit Av — 0, kT, — 0. We shall
obtain an expression for this force when hv, kT,, and mc? have arbitrary
ratios to one another. The corresponding values of the force calculated for
various ratios hv/mc? and selected k7T, are given in Table III.

When a photon is scattered it will transfer to the scattering electron a
momentum

Ap = — Q - T 9% (2.49)

[we neglect certain induced effects; see Levich er al. (1972)]. Hence
radiation of intensity 7,({2, v) will impart to the electrons a force

_ ' O\ L2, )
f-f< Q cn) -

(1 - pﬂ) d‘;, NW)dv dQ dQ' dv. (2.50)
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Here 1,(02, v)/hv represents the spectral number density of photons of
frequency v coming from the direction £, while N(v) gives the distribution
of electrons with respect to velocity and direction. Equation (2.37) de-
scribes the differential scattering cross section, and Eq. (2.4) relates v’ to
v. The values given in Table III have been calculated from Eq. (2.50) by
the Monte Carlo method.

If the radiation is beamed, with I,(Q2, v) = I,(v)d(2 — £,), and if the
electrons are distributed isotropically, the radiation-pressure force will
naturally be directed along the vector {2, and equal in magnitude to

1 v
f=;f(1 ——v—cosa)

x (1 - g) ;‘% Lw)dv Nwydv dQ'.  (2.51)

The force can easily be calculated analytically from Eq. (2.51) in two
limiting cases: a) kT, = 0, hv arbitrary; b) hv — 0, kT, arbitrary, so that
the Thomson-scattering approximation applies.

2.3.3 Analytic Expression: KT, = 0 In the limit v = 0, Eq. (2.37)
reduces to the standard relation

do _r 1 + cos? a0 + AV = cos oy
Q' 2 m’c*[1 + (hv/mc®(1 — cos )]
1

g [1 + (hv/mcH(1 — cos )] 2.52)

With Eq. (2.5), Eq. (2.51) will then become

wr _ cos o
f== f(l 1 + (hv/mc)(1 — cos (x))

1 + cos?a
[1 + (hv/mcH(1 — cos a)]?

(hvimcH*(1 — cos a)?
[1 + (hv/mc®(1 — cos o))

) X Idvdcosa. (2.53)
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The integration over the scattering angle can be carried out; one obtains

_ 3oy 1+a 1+ 29 ,
_4cfa3(1+2a)3< @ -2 -3 +2)

1
+ 3+ 17a + 31a® + 17a® — ?Oa“) Ldv, (2.54)
where a = hv/mc?. In the limit a — 0 we find asymptotically

o 16 hv
f == - — )
- j <1 3 mc2) L(Q, v)Q dQ dv, (2.55)

while in the Klein-Nishina limit, when a > 1,

2
¢ = Lﬁfﬁ m(1+2) 22 1@, e de dv. (256
8¢ hv mc 6

Equation (2.54) has been derived on the premise that the radiation
consists of a highly directive beam. Clearly, however, radiation having
any desired angular distribution may be regarded as a collection of beams.
Partial forces would be directed along the individual beams, and one need
only take a vector sum of those forces, as has been done in Egs. (2.55)
and (2.56).

Monte Carlo calculations have been performed for three different ra-
diation beam patterns: ) a narrow beam; b) a surface on which /,({)) = const,
with u = 0; ¢) a surface on which 7,(£2) = A(v)(1 + 2p). Whatever the
ratios between kT,, hv, and mc?, the resultant force depends only on the
radiation spectrum, kT,, and [I,(£2)€ d€}.

2.3.4 Analytic Expression: hv Small, kKT, Arbitrary Taking in Eq. (2.50)
a differential cross section of the form (2.38) and v'/v as given by
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Eq. (2.6), we obtain for the case of isotropically distributed, monoenergetic
electrons:

1 —
f= re f 1 - —p.,v/c cos a
8mry? 1 — p'vic
<14+ (1= 1 — cos a 2
Y1 — pvic)1 — p'vic)

x —— B, Qi dvd dt @.57)
(1 — p'vic)? v

This integral can be evaluated with the aid of Eqs. (2.39), and we find

that
oq 2 (v’ 5 orq

where q again denotes the radiant energy flux.
For thermal plasma with kT, <€ mc?,

f=°l1< +2kT) (2.59)
C C

since 12 = 3kT./m. In the ultrarelativistic case, when y > 1,

2
£ = >0 [1 +8 (ﬁ;) ] (2.60)

jw .y4 —ymc kT, d.y
-_ 1

because the mean

kT, \
Y~ =~12 (——2> : (2.61)
f ,y2e—-ymc kT, d,y
1

After our calculations had been performed and the analytic expressions
given above had been derived, we learned that O’Dell (1981) had also



MONTE CARLO TECHNIQUES 221

obtained Eq. (2.58); he describes the sharp drop of the Eddington limit in
an ultrarelativistic electron plasma.

2.3.5 Discussion The radiation force in ultrarelativistic electron plasma
will be enormously strengthened (and the critical Eddington luminosity
will correspondingly diminish) because electrons meeting the photon
beam will preferentially scatter the photons by an angle 6 of order m,
greatly raising the frequency of the photons and giving them a large mo-
mentum. That is how most of the electron energy losses will be incurred.

Many processes exist, both collisional and plasma processes, that can
rapidly restore the isotropy of the electron distribution. What we need to
know is how quickly the plasma will be heated up. If electrons with a
particular energy spectrum are being injected, they may lose their energy
[see Eq. (2.30)] before the radiation pressure is able to sweep them out
of the injection zone. Another important question to be faced concerns the
ratio of the number of electrons and protons in the radio-emitting clouds
observed in radio galaxies and quasars and whether cool, nonrelativistic
matter is present in those clouds.

The principal astrophysical application within our purview will be to
the plasma in x-ray and y-ray sources. Such sources as NGC 4151, in
which kT, > mc? and hv > mc?, will also have a greatly diminished value
for the critical luminosity, a circumstance that naturally has to be recog-
nized when constructing detailed models for the sources. When disk-type
accretion is taking place the radiation-pressure force will control the thick-
ness of the disk, so it is indispensable to have accurate knowledge of that
force. On the other hand, the problems of Compton cooling of the plasma
are not very significant for disk accretion, because the accretion process
is quasisteady.

2.3.6 Radiation Force in Thermal Plasma From Egs. (2.55) and (2.59)
we see that when hv <€ mc? and kT, < mc? the radiation-pressure force

_ o (1+2kT,_, 16 hv
- C

_16 __> LQ, R dQ dv. (2.62)

met 5 mc?
For a blackbody radiation spectrum with 7, = T, we find

orq kT,
f=—1{1- 10.26 , .
c ( mcz) (2.63)
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while for a Wien spectrum with 7, = T,,

KT
f=5ﬂ(1—108 g. (2.64)
c mc

For the bremsstrahlung spectrum I, = A exp(— hv/kT,) of an optically thin
plasma layer we will have

6 kT
f=9ﬂ(1——54) (2.65)

c 5 mc?

Some other sample spectra are discussed in Secs. 4.1 and 4.3 below.

2.3.7 Radiation Force upon Accreting Plasma Stream Suppose that
plasma is streaming at velocity v toward an x-ray source of luminosity L.
Assuming in Eq. (2.57) that the radiation flux is directed along a vector
) opposite to the electron velocity vector v, we integrate over p’ = —cos o
to obtain the familiar expression [see, for example, Landau and Lifshits
(1976)]

, (2.66)

which holds for all velocities v. In deriving Eq. (2.66) we have assumed
low-frequency radiation and have neglected the thermal dispersion of the
electron velocities.

2.3.8 Electron—Positron Plasma Compared with the case of electron—
proton pairs, for electron—positron pairs the radiation force will be twice
as great, while the attractive force toward the gravitating center will be
smaller by a factor 2m/m,. Hence the critical luminosity for electron—
positron pairs will be m,/m = 1846 times lower than the original Eddington
value (2.48). If L > (m/m,)L,,, the positrons (along with the electrons, so
as to conserve electrical neutrality) should be swept out of accretion disks
and other high-temperature zones. It therefore appears unlikely that a steady
electron—positron plasma could develop (Bisnovatyi-Kogan et al. 1971).
One of the authors has examined the acceleration and focusing of elec-
tron—positron beams by the radiation of accretion disks (Syunyaev 1983).
The highest energies that the particles could attain correspond to y = 5-
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6, even if the disk has a near-critical luminosity. If the particles were more
energetic than this value, then in their rest frame the radiation would be
directed opposite to them and would brake their motion. In the same paper
the deceleration of fast particles by the radiation of an accretion disk is
calculated.

2.4 Competing Physical Processes

2.4.1 Free—Free Absorption and Emission The mean free path of a
photon against inverse bremsstrahlung (free—free absorption) in hydrogen
plasma is expressed by the relation

1 16w (27\"? P (mA\"” g(x)
el (?) i) SFa-ewn e
ff e

where x = W/kT,, a = 2weé*/hc = 1/137 _is the fine-structure constant,
and g(x) is the Gaunt factor. Comparing Ay with the photon mean free
path for Thomson scattering, A;' = o¢N, = (8/3)nr2N,, we see that

A 2w\ PN, (mc*\"? g(x) _
x—:f = 2n (-3—) 7 ﬁ; ? 1 —-e™, (2.68)

and if the plasma is so rarefied that

KT, M 4
N, <2.62 x 102 (ZEZ) $ (1 - e 'em™?  (2.69)

the free—free absorption of photons with hv = xkT, may be neglected
compared with the scattering.

In this review our interest centers on the energy exchange between
plasma and radiation, and the formation of spectra. As an example let us
consider the Comptonization of low-frequency radiation. Take a plasma
of density and temperature N,, T, and low-frequency radiation of energy
density &, with hv < kT,. According to Eq. (2.28) the plasma will lose
energy to Comptonization at a rate

ds, kT,
7 = 4o N —. (2.70)
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On the other hand, the bremsstrahlung loss rate is given by

dg 8 12 kT 172
7; = (;) aoN’mc? (mé) . 2.7
Clearly if
6m"2 & (kT.\"
N, < (—a—— m_c2 (;;ZE) 2.72)

the Comptonization energy losses will surpass the bremsstrahlung losses:
they will predominate in rarefied, high-temperature plasma.

2.4.2  Electron—Positron Pair Production by Photons When hv > mc?,
the cross section for pair production by a photon on a proton is expressed
(Akhiezer and Berestetskii 1969) by

2
oo = B (™ _ 1), Q.73)
9 mc?

Comparing with the Klein—Nishina cross section (2.12), we see that

Octer _ 3.6 x 1()_3alna - 19

OxN Ina +05° 2.74)
where a = hv/mc?; hence photoproduction of pairs on protons (and on
electrons, as is easily shown) may be neglected so long as hv < 20 MeV
(the two cross sections will be about the same if a = 435). We would
point out that if the relativistic plasma has a small optical depth with respect
to Thomson scattering (v < 1), the presence of the even weaker processes
of pair photoproduction on nuclei and electrons will not significantly affect
the spectrum of the hard (hv > mc?) radiation formed through Compton-
ization—the multiple scattering of photons by relativistic electrons (see
Sec. 4.2).

If the energetic photons have a high number density N, > 1/07R, where
R is the radius of the plasma cloud within which the Comptonization is
taking place, then the process of electron—positron pair production by two
photons will become important. Let the photons have momenta (hv,/c)€},,



MONTE CARLO TECHNIQUES 225

(hvy/c)§2,; then the cross section for pair productiony, + v, = e* + ¢~
by the two photons will be (Akhiezer and Berestetskii 1969)

3o 2 1
0'W=§—;£[<2+;2—;‘)1n(y+ Vy2 — 1)

y
172
(g e

where y* = v hvy(mc®) %1 — cos k), withcosx = €}, * €2,. This process
is inverse to that of two-photon pair annihilation. Figure 9 shows the
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Figure 9 Cross section for the production of electron—positron pairs by two photons [Eq.
(2.75)] as a function of the parameter y* = 4(hv,/mc?)(hv,/mc?)(1 = Q, - §),). Asymptotic
expressions are given for the limiting cases y* — 1 and y* > 1.
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dependence of the normalized cross section (2.75) upon the parameter 2.
The pair production process has a threshold, with o, = 0 for all y?> < 1.
At y* = 2 the cross section reaches its peak value o, = 0.25607.

The mean free path of a photon of momentum (hv,/c)€}; against the
process of two-photon pair production depends on the photon density:

I vz(v21 02)

dﬂdez. (2.76)
hv,

1 1
)\—W = ;j(l — €08 K)T.,(¥)

If hv, > mc?, photons can be absorbed by interaction with the abundant
soft photons having hv < mc?.

The process of single-photon pair production will become important in
the presence of a strong magnetic field. Significant roles will be played
by the processes of production, absorption, and scattering of photons at
the electron gyrofrequency and its harmonics.

3 Evolution of Line Profiles through Comptonization

X-ray lines of iron have been detected in the spectra of the sources Hercules
X-1 (Pravdo et al. 1977) and Cygnus X-3 (Kestenbaum et al. 1977) as
well as several rich clusters of galaxies (Mitchell et al. 1976, Serlemitsos
et al. 1977), heightening interest in the line formation mechanisms in hot
plasma and in the processes responsible for shaping the line profiles. In
many of the widely accepted models of x-ray sources, radiation is con-
sidered to emerge from a region having a substantial optical depth with
respect to Thomson scattering. We shall discuss in this section the manner
in which iron x-ray-line profiles should evolve due to the frequency shift
of photons when they are scattered by electrons.

3.1 Fundamental Processes

3.1.1 Emission of Hot Plasma in Iron X-Ray Lines At the plasma tem-
peratures kT, =~ 1-100 keV prevailing in compact x-ray sources and in the
intergalactic gas in clusters of galaxies, iron will be strongly ionized.
Hydrogen- and heliumlike iron ions, comprising a nucleus of charge Z = 26
and one or two electrons, respectively, will be abundantly represented.
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Ionization by electron collision and photoionization will keep pace with
radiative and dielectronic recombination, resulting in ionization equilib-
rium. The radiative recombination and electron collisions will serve to
populate excited levels and produce emission in permitted, forbidden, and
intercombination lines (those involving transitions whereby the spin of the
ion changes). In dense plasma, however, the forbidden-line emission may
be severely suppressed by electron collision, enhancing the transitions of
excited ions to states corresponding to intercombination or permitted emis-
sion of resonance photons.

In the hydrogenlike iron ion Fe xxvi1 the 2p — 1s transition corresponds
to the permitted Lyman-a line. The photons in this iron line have an energy
hv = 6.97 keV. The 2s level on the contrary undergoes mainly two-photon
decay and does not yield a narrow line. The heliumlike Fe xxv ion gives
a permitted line with a photon energy hv = 6.70 keV (the 2 'P, — 1 1S,
transition, analogous to the AS584 A line in the neutral helium atom),
intercombination lines at 6.67 and 6.68 keV (the spin-reversal transitions
2P, — 1'5,and 23P, — 1S,, respectively), and the 6.64-keV forbidden
line (the 2 3§, — 1 'S, transition).

In the dielectronic recombination [see, for example, Burgess (1965);
Beigman et al. (1968)]

Axyo) + em==Az_\(y, nl)
Az (Yo, n) + hv
ALY + Dk

of an ion having the charge Z and the ground state v,, excitation of one
of the electrons takes place by electron impact (giving the state ), together
with nonradiative recombination of a free electron in the excited state nl.
The resulting ion A;_,, with charge Z — 1, will thus have two excited
electrons whose combined energy is positive. It will be in an autoionization
state and can decay back to the A; ion in its ground state together with
the free electron. But a radiative transition can also take place, with the
emission of a photon and a transition of the A;_, ion to a bound state
Az (o, nl) with a single excited electron. That is the dielectronic-recom-
bination process.

The photon which is emitted will have an energy nearly equal to that
of the photon emitted in the resonance transition A;(y) — Az(7y,) in an ion
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of charge Z rather than Z — 1; its energy will differ only because an extra
electron is present in the excited state.t Such transitions will cause the
permitted lines to be accompanied by satellites. It is worth emphasizing
that when a hydrogenlike ion undergoes dielectronic recombination into a
heliumlike ion, satellites will develop next to the ‘‘Ly-a’’ line of the
hydrogenlike ion, but when a heliumlike ion recombines into a lithiumlike
ion, it is the permitted line of the heliumlike ion that will have satellites.

Decay of the bound excited states A;_ (o, nl) may produce additional
x-ray lines, not only permitted but also intercombination or forbidden.

In the coronal approximation, the plasma density is so low that one may
neglect both collisions that would deactivate the metastable levels and the
destruction of resonance photons through photoabsorption by lower-energy
ions or Thomson scattering (since the lines will not have a very large depth
with respect to resonance scattering; see below). Many authors have in-
voked the coronal approximation to calculate the intensity of lines emitted
by hot astrophysical plasma with the same composition as the solar at-
mosphere [see, for example, Cox and Tucker (1969), Tucker and Koren
(1971), Beigman (1974), and Bahcall and Sarazin (1978)]. Syunyaev and
Vainshtein have evaluated the equivalent width and intensity of hydrogen-
and heliumlike iron lines as functions of electron temperature; the results
are plotted in Figure 10.

3.1.2 Iron Ka Line Photoionization of the electrons in the lower (K)
shell of neutral iron atoms (or weakly ionized ions) by hard (hv > 7.1
keV) x rays will, with 0.34 probability, be accompanied by emission of
a Ko photon. The probability of the Auger effect (in which the refilling
of the inner, K shell is accompanied by the escape of an electron from an
outer shell) is 0.66. The iron Ko line comprises a narrow doublet of energy
hv = 6.4 keV; its components are separated by # Av = 13 eV, and each
has a natural width of = 3 eV.

3.1.3 Line Profiles The profile of an x-ray line is determined in the
coronal approximation by its natural width and by the Doppler broadening
associated with the thermal and turbulent velocities of the ions or atoms.
‘For the hydrogenlike Fe xxvI ion the Ly-a line has a radiative width

1The situation resembles the emission of a K, line by a neutral atom: the energy of the
K, photon similarly differs from the energy of the permitted transition in the corresponding
heliumlike ion.
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Figure 10 a) Equivalent width of x-ray lines of hydrogenlike [H] and heliumlike [He] iron
ions as a function of electron temperature. These values have been calculated in the coronal
approximation by R. A. Syunyaev and L. A. Vainshtein, assuming a normal cosmic abundance
of the elements. The dashed curves R indicate the contribution of the resonance lines only.
b) Plasma emissivity in x-ray lines of H- and He-like iron ions as a function of temperature.
Curve S includes the contribution of the satellites of the He-like ion’s resonance lines; curve
I reflects the contribution of the intercombination lines. Values are expressed in units of
J = 10"%erg cm™3 sec™!.
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Y = yuZ* = 1.2 eV, while its Doppler width

2kT 12 kT 172
= £ = 4. < . 3.1
i (25) s () 0

The ratio of the natural line width to the Doppler width may be expressed
by the parameter

v 10 ke "
= = 0. — 3.2
D= Av, 0.022 ( kT, 3.2

thus in the temperature range of interest the Doppler width will exceed the
natural width. Under the conditions at hand collisional line broadening
may practically always be neglected.

The natural line width is much smaller for forbidden and intercombi-
nation transitions than for permitted lines, and the probability of resonance
scattering is correspondingly low. The probability of absorption by ions
of the resonance-line satellites will be almost zero, as such absorption
would require a substantial density of excited ions.

All these lines, then, will have near-Doppler profiles whose width is
determined by the velocities of thermal and turbulent motion. A further
Doppler broadening or shift will result from the velocity dispersion among
different line-emission regions that is found in binary star systems (the
plasma in the magnetosphere and in the inner zone of the accretion disk
will be rotating rapidly, and the normal component as well as the whole
system will also be rotating):

v v
S i = —— | eV.
h Av (c) hv, = 23 (1 s) e

But the greatest amount of broadening and distortion of the spectrum
will come from scattering by free electrons. When hot electrons scatter
radiation the line profile will be Doppler-broadened and on the average
will shift toward higher frequencies. The Doppler broadening due to elec-
tron scattering is more efficient by a factor VM/m (= 320 for iron) than
that due to resonance scattering (M; denotes the mass of the nucleus). In
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high-temperature gas the first scattering by an electron will produce a

Doppler width
2kTe 172 kTe 172
Aviv = (mcz) = 0.0626 <1 keV) ,

sufficient to remove the resonance lines from resonance. The photons will
suffer a large change in frequency even if they are scattered by cool
(KT, < hvy) electrons: the recoil effect will, on the average, diminish the
photon energy by h Av = (hvg)/mc? = 95 eV,

3.2 Emergence of Resonance Lines from Source

Lyman-a~type resonance lines of the hydrogenlike iron ion Fe xxvi and
the heliumlike ion Fe xxv will be intensively emitted by optically thin gas
of normal chemical composition over the wide temperature range 1-100
keV. These are the temperatures typical of the plasma in many compact
x-ray sources and of the intergalactic gas in galaxy clusters. Angel (1969),
Loh and Garmire (1971), Felten et al. (1972), and the authors (Pozdnyakov
et al. 1979a) have shown that scattering of radiation by the thermal elec-
trons in the sources will greatly broaden the lines, making them practically
unobservable if the source has a large optical depth with respect to scat-
tering. ‘

The optical depth T, with respect to resonance scattering in the line also
proves to be significant here. Usually it much exceeds the optical depth
for Thomson scattering: 7, > 7 (Felten e al. 1972, Vainshtein and Syu-
nyaev 1982). The customary expression for the scattering cross section in
a resonance line with a Doppler absorption profile is

2\/_ 1 A 2
Edal-(@)) e

mc

where the oscillator strength f = 0.416 for the Ly-a line in hydrogenlike
ions; the Doppler width Avp, is given by Eq. (3.1). At the center of the
Ly-a iron line o, = 6 X 107" [(10 keV)/kT,]'? cm?. Even if one accepts
an iron abundance [Fe)/[H] = 3 X 107%, the mean free photon path at
the line center will be much shorter {by a factor (o/or)[Fe}/[H] = 2.7 X 10?
[(10 keV)/AT.]'?} than the mean free path A¢ = (oV,) ! against Thomson
scattering. Under these circumstances the following process will be likely:
excitations of, say, the 2p level of the hydrogenlike iron ion by electron
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impact will, along with recombinations, produce photons in the Ly-a line.
These photons will repeatedly be resonantly scattered by the iron ions
(since 7; > 1), broadening the line: Av « VIn ¢, where ¢ is the time scale
for Brownian wander of the photons. Then after a photon has traversed a
path ct of the same order as the mean free path A for Thomson scattering,
it will be scattered by an electron. Its frequency will change markedly,
and it will escape from resonance.

Let us consider now the problem of the emergence of resonance-line
photons from a plasma cloud. We shall assume that the source of the
resonance photons is located at the center of a spherical cloud and that the
surrounding plasma merely scatters the radiation. Although the solution
of this problem is well established [see, for example, Ivanov’s book (1969)],
one can arrive at a simple result by following the approach which R. A.
Syunyaev and L. G. Titarchuk have taken.

Caslculations by the Monte Carlo method have shown (Osterbrock 1962)
that in a situation of this kind a photon will be scattered again and again,
diffusing slowly in space, until it reaches the far wing of the line and freely
escapes from the plasma cloud. We shall wholly neglect the spatial diffusion
of photons, however, regarding them as being multiply scattered at the
center of the cloud. For simplicity we further assume that as photons are
absorbed and reemitted they undergo a complete frequency redistribution
within the Doppler line profile a(x) = exp(—x%) [x = (v — vg)/Avp, v,
is the frequency of a photon at the line center, Avy, = vy(2kT/Mc)"?].

At the line center the cloud will have an optical depth 7, against resonance
scattering. In view of the complete frequency redistribution a photon of
frequency x will have a probability p; = exp[— a(x)7,] of escaping from
the cloud without having been scattered even once. This probability will
be of order unity only in the far wings of the lines, at frequencies such
that a(x)7o < 1, that is, |x| = VIn 7,. With complete frequency redistri-
bution the probability that a photon will have a frequency x after being
scattered is p, = w%a(x) = w2 exp (—x%). The probability that a
scattered photon will escape from the source is therefore

) 2 o )
P = f_ Pix)p(x)dx = e fo exp (—x2 —Toe_x) dx. (3.4)

For large 7, the integral (3.4) can readily be evaluated (say by the method
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of steepest descent), and one finds

1

P = m. 3.5)

On the average a photon will experience
N.=P' = Var, Vinr, (3.6)

scatterings in the cloud. This expression agrees with the exact result. For
comparison, if photons diffuse through a plasma cloud in which Thomson
scattering is the predominant mechanism and if the cloud has a central
photon source, then the average number of scatterings experienced by a
photon will be 477 [see, for example, Syunyaev and Titarchuk (1980)], far
more than in the diffusion of a resonance line.

The spectrum of the emergent radiation will evidently be described by
the function

1 2
U(x) = pi(X)py(x) = v exp(—x2 —Toe‘*), 3.7)

which reaches a maximum for x| = VIn 7, (Figure 11).

", 7. = 100

-3 -2 -1 0 1 2 3 x

+
Figure 11  The spectrum of a resonance line emerging from a scattering plasma cloud which
has a central photon source. This spectrum has been calculated for an optical depth 1, = 10?
at the line center. For comparison the dashed curve shows the Doppler profile a(x). The
curves are normalized to their peak values.
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Let A denote the probability that a photon will survive a single scattering
and assume that 1 — N < 1; then one can easily determine the photon
destruction probability in the plasma cloud. For if a photon has undergone
N, scatterings {Eq. (3.6)], then the relation N (,)(1 — A) = 1 will yield
the cloud thickness Ty, such that the photons will ‘‘perish’’ almost totally
as they pass through the cloud:

1
T NV_lnd =N

(3.8)

(this approximate solution can be obtained iteratively from the condition
above, provided that 1 — A < 1 and 7, > 1).

Here is a simple example. In the resonance absorption of the Ly-B line
of a hydrogenlike atom, the Ly- line will be emitted with 0.87 probability,
and two photons, Ly-a and He, with 0.13 probability. According to Eq.
(3.8), if 7, > 5.4 at the line center the Ly-B- photons will not be able to
escape from the plasma cloud. Such a line is actually observed in the
spectrum of the Perseus cluster of galaxies (Pravdo and Mushotzky 1980).
We therefore can obtain a further useful bound on the number of hydro-
genlike iron ions in the cluster:

.\ Vi)
NeeoR < 5 % 10" < + -2
Fe oo [(10 keV) 200 km/s] o

({V.m denotes the rms turbulent velocity), since the transition in question
has an oscillator strength f,_, = 0.079.

If a photon should be scattered by an electron in between two resonance
scatterings, it will leave the line profile and perish (it can no longer be
regarded as a photon in the line). Let B = o /g, be the ratio of the con-
tinuum absorption cross section (in our case o, = oy) to the scattering
cross section at the center of the line. If the survival probability A = 1
and the ratio B # 0, the photon will be destroyed along its trajectory. A
photon of frequency x will be created with probability p; = 7 "a(x),
while the probability of destruction en route to the next resonance ab-
sorption is p; = B/[B + a(x)]. Hence the probability that a photon will
‘be destroyed after a single resonance scattering event is given by

2 1
Py = X = = )
A f pipydx = \/—f -——ﬂix \/;B lnB, 3.9
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provided B < 1. Photons will perish in the plasma cloud if the product
NP, of the number of scatterings by the destruction probability is of order

unity:
[ 1
28 lnETO\/ln 7o~ L. (3.10)

Solving this relation iteratively, we find that

1

To = m (3.11)

If the cloud thickness T, exceeds the ‘‘thermalization length’’ 7,,, resonance
photons will perish in the cloud. The condition for the photons to perish
can be written more simply: substituting specific values of B into Eq.
(3.11), we see that photons will perish if

1

T> 310 () (3.12)

Compton scattering that removes a line from resonance may be regarded
as a form of ‘‘continuum absorption,’’ the term generally used in the theory
of resonance-line transfer. The simple derivation we have given does not
work nearly as well if photon sources are distributed throughout the cloud,
but it can readily be modified to the case of a Lorentz line profile. The
problem is examined in detail in Ivanov’s book (1969). In any event the
thermalization length will be described by an expression similar to Eq.
(3.11). It is natural to distinguish three cases [compare the condition (3.12)]:

a. 1 < [2In (7/7)] . The plasma may be considered optically thin with
respect to electron scattering, even for resonance photons. The line will
be broadened only by the Doppler effect from resonance ion scattering; it
will remain comparatively narrow (a few tens of electron volts wide at
most). 8
b. [2 In (7/7)]7! = 0.05-0.2 < 7 < 1. Almost all photons will expe-
rience one and only one scattering by an electron.

c. T > 1. Photons will experience multiple scatterings by electrons within
the source.

In cases b and c, photons that do not undergo electron scattering will
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be able to escape only from a narrow zone in the outer part of the source
where 21 In (7/7) < 1. We would also point out that the resonance-scat-
tering cross section is far smaller for intercombination and forbidden iron
lines than for the permitted line. A situation can arise in which intercom-
bination and forbidden radiation emerges from the source without having
been scattered by eléctrons, so that the lines are narrow, whereas the
permitted line is greatly broadened by electron scattering. That can happen
only if the plasma density is so low that collisions do not appreciably
weaken those lines.

3.3 Emission Zones for Iron X-Ray Lines

Analytic estimates for the problem outlined above have been obtained in
an interesting study by Felten et al. (1972), and Monte Carlo calculations
for one or two cases have been published by Angel (1969), Loh and Garmire
(1971), and Pozdnyakov et al. (1979a).

We opened this section by mentioning some astronomical objects from
which iron x-ray emission has been detected: clusters of galaxies and x-
ray sources in binary star systems. In the case of the galaxy clusters,
straightforward estimates indicate that electron scattering can have little
effect on the intensity of the resonance lines.

McCray and Lamb (1976) as well as Basko and Syunyaev (1976) have
suggested that the soft x rays being emitted by Her X-1 (Shulman e al.
1975, Beigman et al. 1976) may come from a plasma cloud which is
moving along the neutron-star magnetosphere, absorbing and reprocessing
the hard x rays that emanate from the central source. Syunyaev (1976) has
remarked that the reprocessing ought to give rise to a number of emission
lines, and not only resonance lines [see also Bai (1980)]. In fact, in an x-
ray binary system the resonance emission may be accompanied by the Ko
lines of weakly ionized iron ions. The surface of the normal star will be
impacted by a substantial x-ray flux, and the spectrum of the reflected
radiation should contain strong lines of various heavy elements (particularly
the Ka lines) along with distinctive K-jumps (Basko et al. 1974). According
to an analysis by Shakura and Syunyaev (1973) [see also Lyutyi and
Syunyaev (1976)], much of the x radiation will be intercepted by the outer
zones of the accretion disk, resulting in characteristic line emission, whereas
resonance lines will develop in the hot corona vaporized above the disk
and the normal component [see Basko (1978) for further details].

Hatchett et al. (1976) have calculated the intensity of the x-ray lines
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that will form in a homogenous, spherically symmetric plasma cloud sur-
rounding an x-ray source. Emission in the Ko lines of weakly ionized iron
is typical for this case as well.

Contrary to the situation with the Ly-a resonance lines, the photons of
a Ka iron line and resonance-line satellites will not be subjected to reso-
nance scattering but will be scattered only by electrons (both free ones and
those bound in hydrogen atoms). The recoil energy h Av = b mc? =
80 eV acquired by a scattering electron will exceed the binding energy of
the electron in a hydrogen atom, so the scattering process will be accom-
panied by ionization. Thus only calculations for case ¢ (Sec. 3.1), in which
the source has a large optical depth for scattering [T = o(N, + NyR > 1],
will be applicable to Ko photons.

We see, then, that in an x-ray binary system characteristic emission
lines and absorption jumps may be produced by weakly ionized heavy
elements (on the surface of the normal star, in the outer parts of the accretion
disk, in cool stellar wind, in the magnetospheric plasma), while resonance
x-ray lines and recombination emission jumps at energies close to the
ionization potentials of the corresponding ions may occur (in the plasma
near the neutron-star surface, where most of the energy is released, or in
the magnetosphere, as well as in the induced stellar wind, in the corona
above the disk, and so on). In all these places the plasma in the emission
zone will have a substantial Thomson optical depth as the emission-line
spectrum should demonstrate.

3.4 Single Scattering

This is the process represented by case b at the end of Sec. 3.2. We first
give the results of an analytic treatment, and then describe some Monte
Carlo calculations.

3.4.1 Line Profile: Analytic Expression for CasekT, = 0 Inthe limiting
case kT, = 0, the line profile subsequent to a single-scattering event will
be determined entirely by the recoil effect, and one can easily obtain an
analytic formula. A photon having Av, <€ mc? will be scattered by the angle
0 with the probability P(8) d cos 6 = § (1 + cos? 8) d cos 0. Afterward
its energy will be [see Eq. (2.5)]

hv = hy, [1 - —(1 — COoS 0)]
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so that

2

mc vy — v mc?

cosd=1—- ——1j dcos 6 = —;
th Vo Vo

dv.
Transforming from P(6) d cos 8 to P(v)dv, we find that in the frequency
range vo(1 — 2hvy/mc?) < v < v, the line profile will be expressed
(Pozdnyakov et al. 1979a) by

mc?

3 mc? g
Pv)dv = -é-}:;g [1 + (717%) (v — v,)z] dv, (3.13)

where v, = vy(1 — hvymc?) is the average frequency of a scattered pho-
ton. After scattering the line profile will clearly be symmetric about v;,
the point of minimum intensity. Profiles calculated numerically for k7, = O
(see Figure 1) agree closely with the expression (3.13).

3.4.2 Analytic Results for Case hvy, < kT, In this limiting case the
line will be broadened by the Doppler effect in the scattering process.
Babuel-Peyrissac and Rouvillois (1969) and Zel’dovich et al. (1972) have
derived the nonrelativistic kernel of the kinetic integral equation

dl (v)

= —I) fP(v—) Vdv' + fIv(v')i,P(v'—» wdv', (3.14)
dt v

describing how the spectrum changes when the photons are scattered by
Maxwellian electrons:

PG — ) = 2 f K’ — v, wdp. (3.15)
-1

The quantity

, 3 m \"v(l + pd)
' = v, p) = (ZwkT,) Vg

16T
mc? . g2\’
X — pa— — — . .
exp[ W5 (v v cz) ], (3.16)
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| is the cosine of the scattering angle, g2 = v + v'2 — 2puwv’, and v,
v’ respectively denote the photon frequency before and after scattering.

When in the general case one integrates the kernel over the scattering
angle, one does not obtain a simple, convenient analytic expression. But
the result does simplify considerably if one neglects the role of the recoil
effect—that is, if in the exponent in Eq. (3.16) the term hg?/mc? may be
assumed small compared with v — v'. This approximation is valid in the
limit of low-frequency (hv' <€ kT,) spectral lines. Syunyaev (1980) has
determined the following expression for such a profile:

1 m \" (1 + w , 1+ 4
P = 160 <2'rrkT,> u’ {[3 EACEEY (1 + uw?

2,
Q;’”) - ISB(u)Q(u)CD[Q(u)]}, 3.17)

+ 15B(u)] exp(—

in which P(u)du = P(v' — v)dv' [Eq. (3.15)] with u = v/v’,

5 me? (1 — u\’

Q*(w) = T, (1 " u) , (3.18)
W+ ek +1 2 w+ 1 1

B(u) = ——W— + §Q2(u) w T 1 + E Q'w), (3.19)

and

- 2
®(z) = fl | exp(— %) dz

is the probability integral. It is easily seen that
Plv = v') = (WI)PPW — v) = P(wu 2. (3.20)

If we substitute I,(v') = A3(v' — v,) into the kinetic equation (3.14),
we find that after a single scattering by Maxwellian electrons with kT, > hv,
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the photons of a monochromatic line, averaged over all angles of departure,
will have a spectrum of the form

u*P(u)

Vo

L) = (3.21)

This spectrum has a cusp at v = v, that is, at u = 1 (Zel’dovich et al.
1972), and bears no resemblance to the customary Doppler (Gaussian)
spectrum I, = w2 exp[— (& — 1)mc%/2kT,).

The expression u’P(u) can readily be expanded in series with respect to
the quantity x = (v/vy) — 1 near the maximum of the function:

3 35 17
Pu) =1 + -x — + — - =] -
w*P(u) 5% klx| + x (88n 22) Kkxlx| + ,
(3.22)
where
L A
T\ mc*

In its right-hand branch (x > 0),

3 35 17
2 - Z_ = L.
wWwPu) =1 + (2 K)x + (88n 7 K>x2 + ,

so that on the right the spectral index a* = — (dInl/dInx),- .o = Kk — 3.
In the left-hand branch

uzP(u)=1+<%+K>x+(3—5—y—+|<)x2+ R

sothata™ = (dInl/dIn x),-_, = k + %. Accordingly a™ — o™ = 3.

3.4.3 Numerical Calculations; Comparison with Analytic Expres-
sions Figure 12 compares the analytic spectrum (3.21) for a mon-
ochromatic line after a single scattering by Maxwellian electrons with
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Figure 12 Profiles calculated by the Monte Carlo method for a monochromatic line with
hv, < kT. whose photons have experienced single scattering by Maxwellian electrons for
which kT, = 0.01mc? and 0.03mc?. Smooth curves, profiles given by the analytic expression
3.21).

kT, > hv, against calculations by the Monte Carlo method. A spectrum
emitted at a given angle to the original direction of the radiation beam will
have a Gaussian profile and be described by the kernel (3.16), but the
spectra shown in this diagram have been integrated over the scattering
angle; that is, they correspond to an isotropic angular distribution of the
radiation prior to scattering. The curves are normalized to equal numbers
of photons. In both cases, kT, = 5.11 keV and kT, = 15.33 keV, the
Monte Carlo calculations give an excellent fit to the analytic formula, the
deviation becoming significant only when v/vy; > 1.8 or v/v, < 0.4. The
spectral indices to the right and left of the cusp differ by 3, as the analytic
formula requires. Thus Eq. (3.21) very adequately describes the pedestal
of the line profile, formed by photons that have been scattered only once
in the source. On the other hand, for n = 0.01 the comparison represents
a further test of the calculation technique, and the good agreement with
the analytic expression indicates that the results are likely to be correct.
In the Introduction (Figure 1) we have shown profiles of an iron Ko x-
ray line after a single scattering by electrons that have a Maxwellian



242 L. A. POZDNYAKOV, 1. M. SOBOL’ and R. A. SYUNYAEV

spectrum for various temperatures. These curves demonstrate how the
relative roles of the recoil and Doppler effects change as the electron
temperature and the ratio kT ,/hv, increase.

For comparison with the analytic expression (3.13), Figure 1 also dis-
plays a profile calculated for a temperature kT, = 1 eV = 10* °K. Even
when the temperature is this low, the presence of thermal electron velocities
clearly will have a decisive effect on the line profile: it will become
asymmetric, and its low-frequency wing will be much spread out while
the high-frequency side remains practically unaltered. The reason is that
when a photon undergoes forward scattering (1 — cos 6 < 1) its frequency
will experience only a small Doppler shift Av = AvyV1 — cos 6. Note
that the calculation for kT, = 1 eV satisfies the formal condition that the
influence of the Doppler effect upon the line profile be small: v/ic = (2kT/
mcA)Y? < hvydmc?, that is, kT, <€ (hvg)*2mc* = 40[hvy/(6.4 keV)]? eV.

Finally, Figure 13 exhibits profiles computed for an iron x-ray line after
single scattering by weakly relativistic or relativistic electrons. The curves
illustrate the transition from the kernel of the nonrelativistic kinetic equation
given above to the standard asymptotic expression for the kernel of the
kinetic equation which describes the scattering of low-frequency photons
by ultrarelativistic electrons—the inverse Compton effect [see, for ex-
ample, Ginzburg and Syrovatskii (1964); Blumenthal and Gould (1970)].
Ify = (1 — v¥c®)™? > 1, if the electrons are monoenergetic and iso-
tropically distributed, and if the Thomson approximation holds, then after
they are scattered the photons will have an energy between hvy/4y* and
44%hv,, where hv, is the pre-scattering energy [these values follow from
Eq. 2.6) forp =1, ' = ~1 and p = -1, p’ = 1, respectively].
Maximum intensity will, however, be reached at energies hv > hv,.

3.5 The Kompaneets Equation and its Properties

A Fokker—Planck expansion of the kinetic equation (3.14) with the kernel
(3.16) and with induced-scattering terms yields the kinetic differential
equation of Kompaneets (1956):

an _ olNPL 9, kT, on
— =Tt +n+ ——], 3.2
ot mc vzavv nTn h dv (3.23)

describing the Compton interaction between isotropic radiation having a
photon occupation number n = &,c*8whv? in phase space and Maxwellian
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Figure 13 Profiles of the 6.4-keV iron line after single scattering by Maxwellian electrons
(weakly relativistic and relativistic plasma).
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electrons having k7T, <€ mc?. The derivation of the kernel (3.16) assumes
that v < mc®. From the differential equation (3.23) one can determine
the spectra that will result from multiple scattering (here and below &,
denotes the spectral energy density of the radiation).

It is convenient to introduce a dimensionless frequency x = hv/kT, and
time y = [T (H)/mc*loN,c dt. The Kompaneets equation then becomes

x* (n + n + ?) (3.24)

X

2|8
Mol
gle

The last parenthesized term on the right describes the diffusion of photons
along the frequency axis and the cooling which the electrons undergo as
they repeatedly scatter the photons and change their frequencies by the
Doppler effect. The first term in parentheses describes the downward
motion of the photons along the frequency axis and the heating of the
electrons by recoil; the second term allows for induced effects, and it too
is associated with the action of recoil and the electron heating [sce the
discussions by Syunyaev (1971) and Levich and Syunyaev (1971)]. In
Compton scattering the number of photons is conserved, and indeed the
Kompaneets equation implies that

d d
ZtN, =2 [nvzdv = 0. (3.25)

In plasma of specified temperature the processes accompanying the
production and absorption of photons (such as free—free processes) will
leave the frequency distribution function of the photons unaltered only if
the radiation has a Planck spectrum n = (¢ — 1)7' corresponding to
T, = T,. But Compton scattering will no longer affect the frequency dis-
tribution for any spectrum of the formn = (&** — 1)~! with p > 0, that
is, in the more general case of a Bose—Einstein equilibrium distribution,
as one can easily see by substituting the B—E spectrum into the right-hand
member of the Kompaneets equation. The chemical potential p measures
the deficiency in the number of B-E photons compared with a blackbody
photon frequency distribution at the same temperature. In the limit p > 1
the B-E distribution reduces to the special case of a Wien spectrum
n = e "*W or & = 8me *(h¥/c’) exp(—hv/kT,), a law which clearly
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satisfies the Kompaneets. equation without the n? term responsible for
induced processes. In the Wien distribution the mean photon energy

wx3e"‘dx
hv = KT, r—-— = 3kT.. (3.26)

We shall often find in this review that, for a given photon number, Compton
scatterings will tend to establish a Wien spectrum with hv = 3kT,.

Following Levich and Syunyaev (1971), let us multiply the Kompaneets
equation by 8mwhv¥/c® and integrate it with respect to frequency. On inte-
- grating by parts from zero to infinity we obtain the equation

ds, KT, Nh (= Nec? [ &
— = 4 —= 0N.cE — gl—f védv — uf —dv. (3.27)
dt mc me Jy 8mm J, V?

Since dé/dt = — 2 N,d(kT,)/dt, the first term on the right evidently de-
scribes the cooling, and the other two terms the heating, of the electrons.
If §, = A3(v — v,) we arrive at the result obtained in Sec. 2.2.4: every
time a photon is scattered its energy will change, on the average, by
Aviv = (4kT, — hv)/imc?. Setting dé /dt = 0 in Eq. (3.27), we obtain an
expression, derived in a different way by Peyraud (1968) and Zel’dovich
and Levich (1970), for the stationary electron temperature in a radiation
field with a given spectrum:

i = L ([ hosdy + < r@%d (328)
= — — | =dv]. .
TS fo VoAV T 8w ), v

3.6 Analytic Results for Homogeneous Problem

The modification of spectral lines due to electron scattering can easily be
illustrated by taking the homogeneous problem. Consider an unbounded
homogeneous medium filled with electrons at some temperature T,. Let
us represent the initial line profile by a &-function and see how it will
evolve with time. Problems of this kind are of interest for cosmology.

3.6.1 Doppler Broadening If in the Kompaneets equation (3.24) we
neglect the first two terms in parentheses, then it will describe only the
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Doppler frequency shift caused by the scattering. In 1969 Zel’dovich and
Syunyaev solved the resulting diffusion equation:

o 1 3y — In2)?] &
n(x,y)=—\/—iT—yLn(z)exp[—(“+4yy “)];z, (3.29)

which indicates how an arbitrary initial spectrum n(v, 0) will have evolved
at arbitrary time y, for 1 = ofN.ct > 1.

In the case of an infinitely narrow line profile &,(x, t = 0) = Ad(x —
Xo), or equivalently n(x, t = 0) = Bxg3 d(x — x,), we will have the so-
lution

A (Inxg — Inx + 3y)2:|
&(x, y) = ——exp| — . 3.30
(x,y) \/Z‘rr_y xo p[ 4y ( )

The line clearly will broaden with time, its center of gravity meanwhile
shifting toward higher frequencies (Pozdnyakov et al. 1979a) The fre-
quency of peak intensity will increase with y as 2

Xmax = erBy, Pt (331)

!
and at the level of half peak intensity the line halfwidth will be given by

Xin = X% exp(3y £ 2 Vyln2). (3.32)

Solongasy < 1 (and 7 > 1), Doppler broadening will play the main role:
kTe 172
mcz) . (3.33)

3.6.2 Recoil Effect 1If hv > 4kT,, the time evolution of the line will be
determined not by the Doppler effect but by the recoil that results from
electron scattering:

f‘—x = *2Vyln2 = *2VIn 2 ('r

Xo

Q = ——h— (1 — Cos @), (3.34)
v mc?
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where o is the scattering angle. The recoil effect should clearly have a
substantial influence on the evolution of the x-ray line spectrum. If in the
Kompaneets equation we now neglect the last two parenthesized terms (the
induced scattering and the Doppler frequency shift due to the scattering),
then the equation will describe how the spectrum should evolve in the
homogeneous case because of the scattering recoil effect:

on _ _, ')
il P (3.35)
Illarionov and Syunyaev (1972) and Arons (1971) have solved this equa-
tion: the quantity nv* will be conserved as motion takes place along the
trajectory dvidu = — v?, where du = (h/imc)oN.dt. The trajectory may
also be written as d\/dt = oN,i/m, or d\/dv = himc. To this approxi-
mation the line will evidently remain monochromatic as it evolves, and it
can only shift downward along the frequency axis. Actually, however, the
amplitude of the recoil effect will depend on the scattering angle (0 <
Aviv < 2hvimc?), so the line should in fact broaden somewhat (Illarionov
and Syunyaev 1972, Illarionov et al. 1979).

3.7 Multiple Electron Scattering: Computed Line Profiles

We turn now to case ¢ among those listed at the end of Sec. 3.2.
Resonance-line photons are considered to undergo numerous scatterings
by electrons within a plasma cloud, and as a result their spectrum will
change. Photons will naturally differ in the number of times they are
scattered in the cloud; this circumstance as well as the dispersion in the
frequency shift when a photon is scattered will give rise to a complicated
emission spectrum. Thus far analytic expressions describing these spectra
have been obtained only for the two limiting cases kT, = 0 and kT, > hv,,
with a large Thomson-scattering depth T > 1 (Syunyaev and Titarchuk
1980).

In our calculations a spherical plasma cloud has been assumed, with a
uniform electron density and an optical depth 7 = oN.R. We have taken
the cases T = 1, 2, 3, 5, 10, and electron temperatures kT, = 0, 0.102,
1.02, 10.2 keV. Initial energies hv, = 6.9 keV and hv, = 6.4 keV (the
iron Ko line) have been adopted for the photons, whose source is placed
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at the center of the cloud. A case has also been considered in which the
source is distributed uniformly throughout the cloud. The initial line profile
is taken to be a &-function.

The results of the calculations are here presented in several graphs.
Figure 14 illustrates the evolution of the Ka line profile when the cloud
is cold (kT, = 0); thus the Doppler effect will be vanishingly weak and
instead the recoil effect will predominate in altering the photon frequencies.
Accordingly the profile is broadened only on the low-frequency side.

When kT, = 1.02 keV the line profile evolves as shown in Figure 15.
Both the Doppler and the recoil effect now contribute to the broadening.
Figures 14, 15, and 16a clearly demonstrate how the role of the Doppler
effect strengthens with rising plasma temperature: the line width increases
and the shift toward low frequencies diminishes.

Since there is a finite probability of direct photon escape, a narrow peak
develops at frequency v, (see Figure 16b). The photon flux in this narrow
line can easily be calculated analytically. The direct-escape probability
will evidently be

expl— (1 — 2hymc?)] = exp(—0.9757).

For a 50-eV spectral resolution the photon flux in the original line (prior
to scattering) corresponded to 200 units along the vertical axis; hence direct
escape corresponds, for the same resolution, to a flux of 200 exp(—0.9757),
or 75.4, 28.45, 10.73, 1.53, 0.0117 for v = 1, 2, 3, 5, 10, respectively.
The profiles plotted in Figures 14 and 15 take into account only photons
that have been scattered in the source, but their total number corresponds
to normalization by 200[1 — exp(—0.9757)]. In Figure 14 (KT, = 0) the
intensity corresponding to direct escape is shown separately for v = 3 and
5; for the other cases it can easily be computed from the expression given
above.

Thus a narrow line will emerge from the cloud, a core representing
unscattered photons; at the same time there will be a broad pedestal con-
sisting of photons which have experienced Compton scattering in the cloud.

As the energies of the Ka photons of neutral iron and the Ly-o photons
of hydrogen- and heliumlike iron ions differ by less than 10 percent, the
profiles computed for the different lines should naturally be quite similar.
Figure 16b illustrates this resemblance. The curves in Figure 16¢ compare
the intensities calculated for lines emerging from the plasma cloud when
the photons have a central source and when the source is distributed uni-
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Figure 15 Profiles of the 6.4-keV x-ray line emerging from a spherical cloud having kT, = 1
keV and various optical depths. The spectra do not include direct-escape photons. The photon
source is at the center of the cloud.
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formly over the cloud. In the latter case the shift and broadening of the
line are substantially smaller: A),v/v, = 0.09, compared with A, ,v/v, =
0.19 for a central source (if T = 5 and k7, = 1 keV). This behavior
reflects the higher escape probability for photons which have been scattered
only a few times within the source.

The profiles in Figure 17 represent lines of a hydrogenlike silicon ion,
emerging from a plasma cloud with a large Thomson-scattering depth.
These results agree closely with the analytic expressions given below in
Sec. 4.1. Notice that strong power-law wings of the line are formed even
when T = 3, and when 7 is as large as 20 the emergent photons approach
a Wien spectrum.

3.8 Continuum Photoabsorption

As pointed out above, not only emission lines but also other features can
develop in x-ray spectra. In particular, the characteristic absorption of x
rays by weakly ionized iron ions could give rise to a spectrum of the form
depicted in Figure 18. The photoabsorption cross section has here been
taken as op, = op(v/v)® for v = v, where hv, = 7.1 keV for weakly
ionized iron; the quantity o, = 3.5 X 1072 ¢m?. The ratio of the photo-

05 f 2 4 & 16 32 64 hvlkeV)
L 1 i

-1.5 -} ‘ é,(/:v/mz)

Figure 17 Profiles computed for the hydrogenlike silicon-ion line at Ay, = 2 keV emerging
from a spherical plasma cloud having kT, = 10 keV and various Thomson-scattering depths
7. The photon source is central.
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Figure 18 Spectra derived from blackbody radiation passing through a spherical cloud of
low-temperature (kXT, = 0.5 keV) plasma. The processes included in the calculation are: the
characteristic photoabsorption by weakly ionized iron ions, fluorescence in the iron Ko line,
and Thomson scattering. Central radiation source. Upper spectrum calculated for 7./ = 2;
lower spectrum, for Ts/T = 0.8.
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absorption depth to the Thomson-scattering depth depends on the iron and
hydrogen abundances:

TFe O [Fe] 2

T o [H1+X

(3.36)

where X denotes the proportion of hydrogen by mass. Our calculations
assume that either Tr. = 27 (upper curve in Figure 18) or 7g, = 0.87
(lower curve); that is, [Fe)/[H] = 3.2 X 107%or1.3 X 1075, withX = 0.7.
Photoabsorption by elements other than iron has been neglected. Each
event of photoabsorption of a hard x-ray photon will, with 0.34 probability,
be accompanied by fluorescence emission of a 6.4-keV photon in the iron
Ko line.

In these calculations the central source is assumed to have a Planck
primary spectrum with kT, = 6 or 10 keV. The cloud surrounding the
source has kT, = 0.001 mc* and a Thomson-scattering depth 7 = 1 or 2
for the two respective cases. Figure 18 shows that the radiation emanating
from the cloud will exhibit a strong, broad absorption band for v > v,
together with a prominent, narrow Ka line. When 7 = 2, even though a
lower iron abundance is assumed (1z, = 0.87) the photoabsorption

_strengthens, since Compton scatterings will further entangle the photon
trajectories [see also Ross et al. (1978) and Pozdnyakov et al. (1979b)].
In the neighborhood of the Ka line the spectral resolution of the calculations
is 0.2 keV.

The spectrum plotted as a solid curve in Figure 19 has been computed
by the method discussed above for comparison with observations (Becker
et al. 1978) of the x-ray pulsar Vela X-1 (4U 0900 — 40). The following
parameters have been adopted in the calculation: [Fe]/[H] = 1.3 x 1073
(corresponding to T = 0.87), X = 0.7, cloud optical depth 7 = 1,
kT, = 0.5 keV; the spectral resolution is 0.3 keV near the Ko line. The
central source is assumed to have a Planck spectrum with kT, = 10 keV.
The fit to the x-ray measurements is quite satisfactory. Most likely the
strong absorption observed at hv < 5 keV represents photoabsorption by
elements lighter than iron (these are neglected in our calculations).

Spectra of the kind shown in Figure 19 might arise when the radiation
of an x-ray pulsar interacts with magnetospheric plasma, with stellar-wind
plasma, or with the gas streams in the binary system. Such spectra could
not, however, result from interaction of the x rays with material in the
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Figure 19 A simulation of the spectrum of the x-ray pulsar Vela X-1. Model geometry as
in Figure 18; 1 = 1, 7s/7 = 0.8, kT, = 10keV, kT, = 0.5 keV. Experimental points from
Becker et al. (1978).

accretion disk or from the x rays being reflected by the atmosphere of the
visible star: those effects would be of far smaller amplitude.

4 Comptonization of Low-Frequency Radiation in a Hot Cloud
of Nonrelativistic Plasma

4.1 Spatial Problem: Formulation and Analytic Solution

In early attempts to calculate the spectra of x-ray sources, the results of
the homogeneous problem, which are pertinent to cosmology, were naively
carried over to the situation prevailing in a spatially bounded plasma cloud,
where the distribution of photons with respect to the time when they escape
from the source plays the dominant role. Different photons will undergo
a differing number of collisions there, decisively affecting the radiation
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spectrum formed through Comptonization and issuing from the plasma
cloud.

The importance of solving the spatially limited problem was recognized
simultaneously and independently by Katz (1976), Shapiro et al. (1976),
and the authors of this review (Pozdnyakov ez al. 1976). In the first two
papers the analysis relied on a solution of the stationary Kompaneets
equation (Katz adopted a numerical approach while Shapiro et al. solved
it analytically for a single value of the parameters), whereas our calculations
for a cloud of weakly relativistic plasma were performed by the Monte
Carlo method. Naturally identical results were obtained: in the case of a
low-frequency (hv < kT,) photon source the radiation emerging from the
cloud was found to have a power-law spectrum at low frequencies (hv < kT,)
but an exponential cutoff in the range hv > 3kT,.

The next step was taken by Syunyaev and Titarchuk (1980), who solved
analytically the problem of the Comptonization of low-frequency (hv < T,)
radiation in an isothermal, nonrelativistic (k7, < mc?) plasma cloud having
a substantial optical depth with respect to Thomson scattering (7 > 1). In
this case the diffusion approximation will correctly describe how the pho-
tons are distributed over their escape time, or equivalently, over the number
of scatterings u they experience within the source. The average value of
u is of order 72, and one finds that in a spherical plasma cloud the probability
of a photon being scattered many more times than average should fall off
as

2
P(u) < exp [— -3?%%)2] 4.1

almost independently of the manner in which the photon sources are dis-
tributed over the plasma cloud or of the cloud geometryt (see Figure 2 in
the Introduction). For such a probability distribution P(u), and with the
photon frequencies being shifted mainly by the Doppler effect, a power-
law spectrum should be observed.

The behavior here is rather similar to the familiar Fermi statistical ac-
celeration mechanism, which gives rise to a power-law spectrum for the
same reason (Eardley 1976). From the curves presented in Figure 20 one
can see how a unified power-law spectrum will develop from the ensemble

11t is interesting to find that the law of photon escape from a plasma cloud closely describes
the time evolution of the radiation of x-ray bursters during their flare events (Grindlay and
Gursky 1976, Canizares 1976, Syunyaev and Titarchuk 1980).



Figure 20 Comptonization of low-frequency radiation in a cloud of weakly relativistic
plasma for three values of the optical depth 7. Dashed curves represent the contributions of

the separate scattering events. The successive scatterings by Maxwellian electrons combine
to form a power-law spectrum for the hard radiation.
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of spectra produced by photons scattered a differing number of times in
the plasma cloud. Notice that as the optical depth of the cloud increases,
multiple scatterings become more probable and the radiation spectrum
flattens out.

Syunyaev and Titarchuk (1980) have solved the stationary Kompaneets
equation

ld (N VA .5
dexx“(de“N) W -+, 4.2

where the quantity on the left represents the differential Kompaneets op-
erator (Sec. 3.4), including both the Doppler diffusion of the photons along
the frequency axis (first parenthesized term) and their downward motion
along that axis due to the recoil effect (second term). The role of induced
processes is neglected. On the right-hand side the first term describes the
diffusion of photons out of the source; the second allows for the presence
of photon sources with a spectrum f(x) in the cloud. The quantity N = I,¢%
2m’ is the occupation number in photon phase space, x = hv/kT, is a
dimensionless frequency, and

mc?

(t + 3)%T, 4.3)

_w
YT 3

if the geometry is spherical (a cloud of radial optical depth T), while

mc?

172
I me 4.4
12 (1, + 3)%T, “.4)

'y=

in the case of a disk (Figure 6a).

Equation (4.2) reduces to Whittaker’s equation, and if v > v, (hv, < kT,
is the characteristic energy of the radiation from the low-frequency photon
source) it yields the following solution for the flux:

F,(x) = Ax e~ fw rlex + 0*t3dr
0

a+3
= Aﬁe""f t““e"(l + i) dt.  (4.5)

0
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In both the limits x < 1 and x > 1 the integrals in the expression for the
spectrum reduce to gamma functions, much simplifying it. For x < 1 we
find the power-law radiation spectrum

F,(x) = Bx™% (4.6
for x > 1, the Wien spectrum
F(x) = Cxle™™. 4.7

When x < 1 the spectral index
a=—3+Vi+y 4.8)

depends only on the electron temperature and optical depth of the plasma
cloud, not on its internal distribution of photon sources. That is quite
natural, because after having been scattered # = 73 times the photons will
completely forget where they were born. A hard radiation spectrum, on
the other hand, will produce photons that undergo far more scatterings
than the average value i = 73.

The solution (4.5) describes the spectrum at all frequencies. Its signif-
icance was recognized once this comparatively simple expression proved
to fit perfectly the spectrum of the source Cygnus X-1 (Figure 4), the
renowned black hole candidate [see, for example, Eardley et al. (1978)].
High-altitude balloon measurements obtained by the Max-Planck-Institut
fiir Extraterrestrische Physik have been compared against the values given
by Eqgs. (4.5) and (4.8) (Syunyaev and Triimper 1979); the results indicate
that the Cyg X-1 accretion disk has an electron temperature k7, = 26.5
. keV and a scattering optical depth 7, = 2. For spherical geometry, by Eq.
(4.3), 7 = 5. These observations furthermore imply that the part of the
accretion disk responsible for the x rays ought to be fairly homogeneous
and isothermal.

Remarkably enough, a detailed analysis of the structure of accretion
disks on the basis of standard disk-accretion theory (Shakura and Syunyaev
1976) unexpectedly disclosed that the inner disk zone should contain just
such a region, with a scattering optical depth 7, across the disk and an
energy release Q* per unit surface area that are practically independent of
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the distance from the black hole. For a Schwarzschild black hole this zone
would extend from 3.2 R, to 7-8 R,, and about 30-40% of the energy
emitted by the accretion disk would be released there (Syunyaev 1983).
At large distances from the black hole 7, will grow rapidly and there will
be a sharp decline in Q* (here R, = 2GM/c* = 3M/M,, km is the grav-
itational radius of the black hole).

4.2 Relation between Number of Scatterings and Photon Frequency

According to Eq. (3.31), when low-frequency photons are Comptonized
in an unbounded, homogeneous medium filled with hot electrons their
frequency will, on the average, increase with time as

exp| 3 KT,
Vv = v, ex —ul,
0 €XP mc?

where v, is the initial frequency of a photon and u = [oN,c dt represents
the number of times it is scattered. Taking logarithms, we see that the
photon frequency will shift from v, to v after an average number of about

1 mc?

l 1%
= — n—
“E3w ",

scatterings.

A relationship of the same kind can easily be derived for the spatially
limited problem—for a sphere or a disk. Following the approach of Syu-
nyaev and Titarchuk (1980), we represent the spectrum of the radiation
escaping from a disk as a convolution:

i) = f " LG WP,
0

where P(u) specifies how the photons are distributed with respect to the
time when they emerged from the plasma cloud, and /,(x, u) describes the
emission spectrum that would have developed after time ¢ = u/orN,c
through Comptonization of low-frequency photons in an unbounded, ho-
mogeneous medium filled with hot electrons. So long as hv, < hv < 34T,
the frequency will change solely because of the Doppler effect, and /,(x,
u) will be completely determined by Eq. (3.30); one merely needs to
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remember that the variable y = (kT./mc*)u. By substituting into the in-
tegral for F,(x) the solution (3.30) and an eigenfunction P(u) = Be P,
and then integrating over u by the method of steepest descent, Syunyaev
and Titarchuk found that

F.x) = D@) (f) :

0,

where @ = —3 + V§ + v, with y = (mc¥kT,)B. The constants D)
and B(iz) both depend upon the distribution of soft-photon sources over
the plasma cloud.

In carrying through the integration,

] {In (x/xp) + 3yP?
F(x) = ABJ eXpy — ——————— —
) o Vdmy P 4y

y ody

= i ” e_“’(y’dy,
Vidr Jo

we automatically arrive at a relation between the number of scatterings u
and the frequency v which defines Eq. (3.31). The function ¢(y) reaches
a minimum when

X 9 1
I = =4y {=+y+ —)
nxo y<4 Y 2}’)

If . > 1 (the only case in which the photons can drift significantly upward
along the frequency axis), we will have the simple expression
Yeir = (9 + 4y)™"? In (x/x,); in other words, in order for v > v, the
number of scatterings should be

In (vivy) m_c2 _In (w/vy) mc?

“TNS T Ay kT, T 20 + 3 AT

where a, as before, denotes the spectral index of the x rays observed. This
equation was published by Payne in 1980. It will be valid provided hv < 3kT,,
that is, in the Zone where the recoil effect may be neglected. Clearly the
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photons in the Wien tail of the spectrum formed through Comptonization
will have undergone even more scatterings.

In the case of the Cygnus X-1 source, where a =~ 0.57, kT, = 27 keV,
and 7, = 2, the number # = 2-4; a photon will need 20 scatterings to
build up from hv, = 1 keV to hv = 3kT, ~ 81 keV. The expression given
above is useful for estimating the time scale on which the x-ray emission
will vary in different energy ranges.

4.3 Monte Carlo Calculations of the Radiation Spectrum

It is natural to inquire how pertinent Syunyaev and Titarchuk’s diffusion
approximation is to the state of affairs in the Cyg X-1 disk, where the
optical depth is small (7, = 2) and the radiation temperature is compar-
atively high. To clarify this point, numerical calculations have been per-
formed by the Monte Carlo method for kT, = 25 keV and two geometries:
spherical and disk (Figures 21 and 22). In Figure 21 we compare the
spectra (solid curves) computed from Eqs. (4.5), (4.8), and (4.3) against
the Monte Carlo results for the corresponding 7 and the same iT,. The
analytic expression systematically diminishes the intensity for high Av; in
other words, it overestimates the spectral index «. But as the Thomson-
scattering optical depth of the disk increases, the departure of the analytic
approximation from the Monte Carlo results becomes smaller. This cir-
cumstance suggests that the disparity reflects an inaccurate estimate of the
parameter vy: Eqs. (4.3) and (4.4) are based on the diffusion (in space)
approximation, and when 7 is small they would not be expected to describe
properly how the number of scatterings in the cloud depends on optical
depth. From the Monte Carlo calculations one can determine the spectral
index a in the low-frequency region and substitute it into Eq. (4.5) to
obtain an analytic fit to the spectrum for all hv.

Syunyaev and Titarchuk (1983) have developed methods for estimating
the parameter vy in the diffusion approximation for intermediate optical
depths (T = 2), and have also obtained exact values of vy by solving the
equation of transfer. The resulting spectral indices a are in good agreement
with the Monte Carlo calculations described below.

In the disk case, Figure 22 (computed to higher precision than Figure
21) shows that for small depths (7, < 2) the high-energy tail of the spectrum
runs below the analytic approximation. This behavior results from the
Klein—Nishina decrease in the scattering cross section and the concomitant
lengthening of the photon mean free path at hv = 100 keV by some tens
of percent [see Eq. (2.16) and Table I]. The spectrum is here formed by
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Figure 21 Comptonization of low-frequency photons in a spherical plasma cloud having
kT, = 25 keV. Solid curves, the analytic expression (4.5) with spectral index a given by
Eq. (4.8); dashed curves, the analytic solution with o taken to agree with the low-frequency
portion of the corresponding Monte Carlo spectrum. Central photon source.
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Figure 22 Comptonization of low-frequency photons in a disk having kT, = 25 keV. The

spectral indices o have been estimated from the low-frequency branch of the Monte Carlo
spectrum and then used to construct analytic curves from Eq. (4.5).
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multiple scattering and the modest change in the free path is reflected in
the radiant intensity, diminishing it. For large depths (1, > 2) the distri-
bution manages to develop a stable Wien tail and the lengthening of the
path is much less apparent. Lorentz (1981) has arrived at a similar con-
clusion.

Table IV summarizes the values obtained in this way for the spectral
index. In Figure 21 the approximating spectra are shown by dashed curves;
they clearly fit the Monte Carlo calculations very well. The tabular values
are closely satisfied by Eq. (4.8) with

mc?

4 (r + 0.5kT,’ 12 (1o + 0.9)T,

for the spherical and disk configurations, respectively.

The form of the hard x-ray spectrum will depend on many factors: the
temperature distribution over the disk (along both the radial and the vertical
coordinate), its variability with time, electron temperature irregularities,
the presence of an even hotter corona, and so on. If the local plasma
radiation spectrum were accurately known, it still would be far from ob-
vious that the integrated disk spectrum ought simply to represent the sum
of the local spectra.

Two processes should act to distort the disk radiation spectrum. First,
the material in the disk zone where most of the energy is being released
will revolve in Keplerian orbits at speeds of order (0.25-0.3)c. We will
view zones both approaching and receding from us. The spectrum will be

Table IV Computed X-Ray Spectral Indices

Spherical Disk
geometry geometry
T a To a
3 1.00 0.75 1.43
4 0.68 1.0 1.13
5 0.50 1.5 0.78
7 0.26 2.0 0.57
10 0.13 2.5 0.43
3.0 0.32
5.0 0.10
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Doppler-distorted, the amplitude of the effect depending on the site of the
emission point and the inclination angle of the system. Second, general-
relativity effects should redshift the photons on their way to the observer
and curve their trajectories.

A recent analysis (Kolykhalov and Syunyaev 1983) has shown that the
Cyg X-1 spectrum can be reconciled with Eq. (4.5) and the Monte Carlo
results if the inclination of the system is in the range 45° < i < 60°. We
have here a unique opportunity to measure the inclinations of accretion
disks. Furthermore, one can infer that the black hole has a small angular
momentum (it should have more nearly a Schwarzschild than a limiting
Kerr metric), as one would expect for a source such as Cyg X-1, with its
decidedly subcritical disk accretion (L <€ L). Over the lifetime of the
optical component the contribution of the accreting material would be
unable appreciably to raise the mass and angular momentum of the black
hole.

There has been much discussion of models wherein the x-ray emission
of quasars similarly would be attributable to the Comptonization of low-
frequency photons in an accretion disk. Figure 23 illustrates a simulation
of the observed spectrum of the quasar 3C 273 (see also Figure 3). Notice
that as the temperature rises the Monte Carlo results begin to depart sig-
nificantly from the curve based on Eq. (4.5). Moreover, the spectrum
flattens out somewhat in the 20-50 keV interval, as photons accumulate
at the Wien maximum.

4.4 Angular Distribution of Photons Emerging from Disk

Monte Carlo calculations can also demonstrate how the intensity of the
radiation emanating from the disk will depend on the cosine p. of the angle
between the ray trajectory and the normal to the disk plane. Figures 24—
26 illustrate the results of such a calculation for a disk having kT, = 25
keV, 1, = 2, and low-frequency photon sources with a blackbody spectrum
corresponding to temperature k7, = 0.25 keV. If all the photon sources
are confined to the central plane of the disk (Figure 24), then at low energies
(hv < 3 keV) only photons which have undergone comparatively few
scatterings in the disk should escape from it. The situation here resembles
the classical problem of radiation emerging from a semi-infinite atmosphere
(for a flux independent of 7), wherein the main contribution to the opacity
comes from electron scattering (Chandrasekhar 1950, Sobolev 1967). To
the accuracy of our calculations we can merely say that the result is
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Figure 23 . A Monte Carlo simulation of the spectrum of the quasar 3C 273. The disk optical
depth 7 = 3.08 for the lower curve; 7 = 2.36 for the upper curve. The continuous curves
represent the solution obtained by Syunyaev and Titarchuk (1980). Experimental data are
from the HEAO A2 detectors. Vertical lines bound the standard 2-20 keV x-ray region.

adequately described by the law I, (p) = §F, (1 + 2p), where
F, = [y I(p)p. dp represents the flux at a given frequency emitted by
unit surface area of the disk.

For hard photons (hv > 5 keV), matters are far more interesting. These
photons will have acquired their energy through Comptonization in the
course of numerous scatterings (the spectrum corresponding to the problem
at hand is shown by curve A in Figure 26), and they will have entirely
forgotten where the low-frequency sources were located. From the three
right panels of Figure 24 we see that the radiant intensity is virtually
independent of w: 7,(n) = 2F,/w. This is a notable and by no means
obvious result. Even though the two problems have similar geometry, the
angular intensity distribution that will develop from Comptonization evi-
dently differs sharply from the classical distribution.

In Figure 25 we present calculations for the case where isotropically
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radiating low-frequency photon sources are located outside the disk, on
one side of it. We now have to distinguish between the reflected radiation
and the radiation passing through the disk. Table V indicates the ratio of
the reflected to the transmitted flux, integrated over w, for five regions of
the energy spectrum. Hard photons scattered many times naturally will no
longer remember the directivity of the soft photons. It is apparent from
Figure 25 that, to within the accuracy of the calculations, the hard photons
will have the same angular distribution on either side of the disk, in
agreement with the results for photon sources confined to the central disk
plane (Figure 24).

The spectrum of the radiation emerging from a disk with kT, = 25 keV
and 7, = 2 is shown in Figure 26 for three different spatial configurations
of the low-frequency kT, = 250 eV photon sources: in the central disk
plane, uniformly distributed throughout the slab, and on one side of the
disk (the sum of the reflected and transmitted radiation).

As expected, the difference between the angular intensity distributions
of the reflected flux and that transmitted through the disk is greatest in the
soft energy interval, 0.2-0.5 keV (left panel of Figure 25). The transmitted
radiation does have a distribution /,(ju) = $F,(1 + 2), while the reflected
radiation conforms fairly closely to the law I () = 1.5F,u" "2

Results similar to these calculations can also be obtained analytically,
by applying the standard theory of light scattering in planetary atmospheres
[see, for example, Sobolev (1967)]. Such an atmosphere is illuminated by
a parallel beam of sunlight whose rays are incident at an angle with cosine
Mo, producing an illuminance wF on a surface normal to the beam. In the
simplest case, a semi-infinite atmosphere in which the scattering function
is purely isotropic, the emergent intensity will be expressed by

Lt = 0; p, po) = Fp(p, Po)ieos 4.9

Table V Reflected/Transmitted Flux Ratio for Exterior Sources

Photon
energies
keV F~/F*

0.2-0.5
1-3
5-15
25-175
10>-10°

—_— i OV
— e B = 00
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Figure 26 Spectrum of the radiation emerging from a disk whose low-frequency photon
sources are: A) confined to the central plane (Figure 24); B) distributed uniformly throughout
the disk; C) located on one side of the disk (Figure 25). The curves represent the sum of the
reflected and transmitted intensities.

where the atmosphere has a brightness coefficient

e(r)e(ro)
, = 4.10)
P, o) X + o)
A table of the standard function
te(p') dp’
=1+ ) f ———— 4.11)
() B —
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will be found in any textbook on radiative transfer theory; to adequate
accuracy for our purposes it can be approximated by the simple expression
¢() = 1 + 2p.. Our calculations regard the low-frequency photon sources
as isotropic emitters, located on one boundary surface of the disk. In this
event,

1
ILit=0p =4 f P(, Moddirg
0

+ p

=A [(1 — 4pd) In 2 +1+ 2;»]. 4.12)

From the condition F, = [{I(t = 0; w)pudp = 1 we can readily evaluate
the constant: A = 1.25. A rather good fit to the intensity (4.12) is given
by the simple formula I (+ = 0; p) = 1.5u""2, and in fact this approx-
imation agrees somewhat better with the calculations than does the analytic
expression (4.12).

The angular distribution of the emergent photons will depend strongly
on the disk optical thickness and on the energy range and temperature of
the electrons in the disk. These relationships are graphically demonstrated
by calculations we have performed for the angular distribution of the
radiation in the alternative 3C 273 models whose spectra are shown in
Figure 3. To illustrate, Figure 27 plots the angular distribution of the
photons that would be emitted by a disk with 7, = 0.32 and kT, = 250
keV. We see that as the photons become more energetic, the radiation
intensifies for p < 1, but in the vicinity of the normal to the disk plane
the intensity diminishes. Peak intensity no longer occurs along the normal
direction . = 1. Syunyaev and Titarchuk (1983) have obtained the same
result by a different method. Furthermore, for high photon energies effects
come into play due to the change in the scattering function and the di-
minished cross section given by the Klein—Nishina formula.

Because of this energy dependence of the angular distribution of the
emergent photons, the emission spectrum of the disk ought to depend on
the angle at which we view it. According to Figure 27, the hardest spectrum
should be observed when p <€ 1; the softest, when p = 1. Calculations
of the type depicted here and in Figure 28, which corresponds to another
of the model disks, will be needed to establish the total luminosity of the
object, since the radiation flux we receive turns out to be sensitive to the
angle by which the disk is inclined to the line of sight.
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4.5 Polarization of Hard Radiation Generated by Comptonization in
Accretion Disk

Syunyaev and Titarchuk (1983) have proposed a straightforward method
of finding both the angular distribution and the polarization of the radiation
produced by Comptonization in an accretion disk. For hard radiation (with
hv > hv,, where hv, is the characteristic energy of the low-frequency
photon sources), these both prove to be independent of the photon energy
and of the manner in which the low-frequency sources are distributed over
the disk. The only quantity governing the polarization and the angular
distribution is the disk optical depth (Figures 29 and 30).

In particular, it is interesting to see (Figure 29) that if 7, = 1 the peak
intensity will occur at p = 0.43, or in a direction about 65° from the
normal to the disk. For large optical depths, 7, = 10, the computed values
nearly coincide with the classical result [(u = 1)/[(p = 0) = 3.06 which
Chandrasekhar (1950) and Sobolev (1967) obtained for an electron-scat-
tering atmosphere. Note that the quantity plotted in Figure 29 is I(p),
unlike Figures 27 and 28, for example, which show F, = pl(p).

Figure 30 presents polarization curves for the radiation emerging from
an accretion disk with various optical depths 7. For 7, > 10 the polari-
zation approaches the classical Chandrasekhar—Sobolev curve, reaching
11.7 percent at p. = 0 if 7, = 10. As 7, diminishes the polarization re-
verses sign, with maximum |p| being reached for small 7, in the range
p = 0.2-0.4. This result, we would emphasize, holds only for photons
which have been Comptonized in the disk, that is, which have undergone
far more than the average number of scatterings there. The Syunyaev—
Titarchuk method has the shortcoming that it assumes a Thomson scattering
cross section and a Rayleigh scattering function. Monte Carlo calculations
of the type illustrated in Figure 27 will be necessary to calculate the
polarization and angular distribution of the hard (hv > 100 keV) radiation
formed in a high-temperature (KT, > 100 keV), optically thin (1, < 1)
accretion disk.

4.5.1 Radiation Pressure within Disk In the inner zone of an accretion
disk the thickness will be determined by the balance between the tangential
component of the attractive force toward the central body and the pressure
of the radiation upon the electrons (Shakura and Syunyaev 1973, 1976).
By applying the discussion of Sec. 2.3.6 one can determine the pressure
that would be exerted on the electrons by radiation having the spectrum
observed for the source Cyg X-1 (Figure 4), the prime black hole candidate.
Exact equations yield a radiation pressure 25 percent lower than the value
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Figure 29 Angular intensity distribution of the hard radition generated by Comptonization
of low-frequency photons in disks having various optical depths 7, (Syunyaev and Titarchuk

1983).

f = (or/c)q obtained in the Thomson limit. Models of specific sources
should take this correction into account.

4.6 Double Compton Emission as Source of Low-Frequency Photons

4.6.1 Low-Frequency Photon Sources In the problem of the Compton-
ization of low-frequency radiation one postulates that sources of low-
frequency photons are present. If spherically symmetric accretion is taking
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place onto a neutron star (or white dwarf) with a weak magnetic field,
matters will be straightforward: low-frequency photons will arrive from a
stellar atmosphere heated by the hard x rays of the zone where the bulk
of the accretion energy is being released. For disk-type accretion onto a
weak-field neutron star, such a soft-photon source will again operate—in
the boundary layer indicated in panel 2 of Figure 1. In the case of a strongly
magnetized neutron star, accretion will proceed in a magnetic column, but
even here the neutron-star atmosphere will necessarily act as a soft-photon
source: not only is it being externally heated by hard radiation, but energy
is being liberated in the lower atmospheric layers due to combustion of
thermonuclear fuel there as well as adiabatic heating of the contracting
material.

Several years ago Shakura and Syunyaev (1973, 1976) pointed out that
certain difficulties will arise with low-frequency photon sources in accretion
disks around neutron stars and black holes if the luminosity is close to the
Eddington limit and the turbulence parameter o = 1. They remarked that
thermal instability might cause the disk material to break up into cool dense
clouds (optically thick with respect to true absorption, and accordingly
natural sources of low-frequency photons) and a hot, energetic component
in which turbulent motions would be dissipated, releasing most of the
energy and resulting in Comptonization. There has also been considerable
discussion of the impact on a disk of low-frequency radiation from an
external source (Lightman and Rybicki 1979).

Under suitable conditions, major sources of low-frequency photons could
include electrons radiating in the magnetic field at the gyrofrequency
vy = (e/2mmc)H (Shakura and Syunyaev 1973), bremsstrahlung (Kom-
paneets 1956, Illarionov and Syunyaev 1972), and the double Compton
effect, whose astrophysical role has often been considered (Weymann 1965,
Gould 1972, Syunyaev and Zel’dovich 1980), with specific applications
to the universe (Danese and De Zotti 1982, Syunyaev 1983), stellar interiors
(Thome 1981), and high-temperature astrophysical plasma (Lightman 1981).
We will show in this section, however, that the double Compton effect
cannot make any significant contribution in the case of x-ray sources. This
negative result was first obtained by one of us (Syunyaev) in 1974.

4.6.2 Double Compton Effect When a photon is Compton scattered,

Y1 +e—"Y{ +e,,
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there is a small but finite probability that an additional, soft photon -y, will
be emitted:

ite=vi+ v+,
just as in the elastic scattering of an electron by a proton,
e+p—eée +p,
there is a small but finite probability of photon emission:
et+tp—>e +p + 4.

This last is the familiar bremsstrahlung process.

First of all, in bremsstrahlung the photon production probability is pro-
portional to the square of the plasma density, but in the case of double
Compton emission it is proportional to the product of the electron density
N, by the photon density N,. Hence if N, > N, the double Compton effect
could become an important source of photons.

In the nonrelativistic case (hv, <€ mc?, v < ¢), the cross section for
emission of a photon of frequency v, < v, is given (Jauch and Rohrlich
1955, Akhiezer and Berestetskii 1969) by

4« (hy 2 dv,
= - | 1 — =2 .
dop 3w (mcz) ( cos 0,) ” dog, 4.13)

where 0, is the scattering angle for the first photon,
doc = do(1 + cos? 8,)d cos 9, 4.14)

represents the differential Thomson scattering cross section, and a = 2mwe¥/
hc = 1/137 is the fine-structure constant. On the other hand, the bremss-
trahlung cross section in the nonrelativistic limit is (Jauch and Rohrlich
1955)

(4.15)
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where B = v/c specifies the velocity of the electron before it is scattered
by the proton.

The spectral emissivity of Maxwellian, fully ionized hydrogen plasma
due to bremsstrahlung is expressed (Allen 1973) by

= N? f hv doy uf(v)dv
dv

8 mcz 12
=\ aohe iT exp | —

where g(v, T,) is the Gaunt factor and fv) denotes the electron velocity
distribution function. We can define an analogous emissivity for the double
Compton effect:

ijhvz—cd 9, &) l) v,

h1
4o
3

h
- )g(v, T)N,  (4.16)

B (e
o1z N, [ Gwdn, @1)
m*c v

in which &, [erg cm™* Hz™!] denotes the spectral energy density of the
radiation. For classical laws &,(v,) the expression (4.17) can easily be
integrated. In the case of a Planck spectrum &, = B, =
8mhvic3e™ — 1)7!, we readily find that

kT\® (kT \
= 1.037 X 2% (—) (—2) hcoN,
hc/ \mc
KT\’
= 4.39ah — ] M 4.1
ahcor (mcz) W  (4.18)

in the range hv, < kT, for which the lower limit of integration in Eq.
(4.17) may be set equal to zero. Here N3 = 8w® X 0.244(kT/hc)’ is the
blackbody photon density. Since §,(v)) falls off exponentially when hv, > kT,
the form of the expression (4.17) indicates that j°(v,) similarly should
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decline exponentially for Av, > kT. On comparing now the expressions
4.17), (4.16), we see that for hv, << kT

P 476 [(kT\*N
—] = (4.19)

2 gw, D \mc?/ N.

Highly simplified models for x-ray sources of the Scorpius X-1 type
posit a homogeneous, isothermal plasma cloud optically thin to free—free
scattering but with a large Thomson-scattering depth T = o:N.R > 1
(Shklovskii 1967, Neugebauer et al. 1969, Matsuda ef al. 1971, Illarionov
and Syunyaev 1972, Chapline and Stevens 1973, Miyamoto 1978). Two
simple limiting cases may be considered (lIllarionov and Syunyaev 1972):
a) if the parameter y = (kT./mc®)7? < 1, Comptonization will have little
influence on the radiation spectrum; b) if y > 1, the spectrum inside the
cloud will be practically independent of the photon source spectrum and
will approximate a Wien law &, = Av® exp (—hv/kT,), where the constant
A depends solely on the number of photons emitted by the cloud during
the mean photon escape time.

4.6.3 Photon Density at Center of Cloud In a homogeneous spherical
cloud let the photon sources be distributed uniformly with a volume em-
issivity j, [cm~* sec™']. Then the photon density N, in the source will be
determined by the diffusion equation

DAN, + j, =0 (4.20)

with the boundary condition [N, + % dN./dr]; = 0. Moreover, N, should
remain finite at every point of the cloud. Substituting the diffusion coef-
ficient D = /30N, and the expression for the Laplace operator A into
the spherically symmetric problem, we obtain the equation

—— R Ty = 0, 4.
r dr dr [ Iy ( 21)

whence we find

N, = 18T (1 - ﬁ) ¢ 2R (4.22)
3¢
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Thus at the center of the cloud

R
N, = 20( + 3), 4.23)

and photons will escape from it on a time scale R7/2c.

4.6.4 Casey <1 If we replace j, by the quantity j5/hv, we can easily
find the spectrum and density of free—free photons at the center of the
cloud: & = R(t + %)/8/2c. Then for hv/kT = 1 it follows from Egs.
(4.17), (4.16) that at the center of the cloud

P 2a (kN , hv\ 2 a kT, hv
- === +—] === —]. @
B 3w (mc2> ! kT 3mme” bt kT (4.24)

Clearly /2 < jB if y < 1. Exactly the same result is obtained in the time-
dependent problem of an infinite, homogeneous medium whose photon
population grows with time.

4.6.5 Casey > 1 At the center of the cloud the photons will have a
Wien frequency distribution &, = Ax’¢™*, where x = hv/kT. The radiant
energy density &, = [§ 6,dv = 6AkT/h, while the photon density N, = &/
3kT, = 2A/h.

According to Eq. (4.17), the double Compton emission of soft photons
will have the value

4a KT\’
PP =-—0olNc <-—2) Al(x,), 4.25)
37 mc

where I(x) = [ e’z = e (24 + 24x + 127 + 4 + x*), so that
at the center of the cloud

aNy _ ("8
dt o MV

2 & KT,
v~-2g (24 LI 50) (4.26)
9 11' mc? mc? X,

X <€ 1 corresponds to the frequency at which the photon absorption rate
through the double Compton effect or by free—free absorption is comparable
with the rate at which the photons Comptonize upward along the frequency
axis (Kompaneets 1956).



MONTE CARLO TECHNIQUES 283

Photon production by the double Compton effect will play a significant
role if Compton scatterings can yield a single photon during the mean time
scale for a photon to emerge from the cloud. From the estimate (dN,/dr)
(t) = N,, where (t) = R7/2c, we have the condition

8a [kT,\?
—f (m_c2> 72 In <x§) = 1. 4.27)
0,

If x, = 107%-1072 the quantity (kT./mc??*t*> = 5-10, while in order for a
Wien spectrum to develop we must havey = (kT,/mc?)7? > 1. The process
will operate provided kT./mc* = (5-10)y~!, that is, at very high temper-
atures (very large y).

On the other hand, double-Compton photon production will surpass the
contribution of bremsstrahlung processes only if the source is particularly
luminous and compact. Indeed, the cloud will have a luminosity L = (4m/
3)R€/t) = (8nm/3)R*c& /7. Comparing j° with jB, and replacing the &, in
J2 by L, we find that the double Compton effect will predominate if

L m R [(mc*\"
— > 0.7 ; E (kT ) g(xo), 4.28)
cr p g e

where L is the critical Eddington luminosity and g(x,) = 10 is the brems-
strahlung Gaunt factor.

The estimates above demonstrate that in a cloud with kT, = 25 keV the
double Compton effect can be of consequence only if the cloud luminosity
is near-critical and the plasma has great optical depth, * > 9. In Cyg
X-1 the radiation spectrum might be formed in a spherical plasma cloud
with 7 = 5, not large enough for double Compton emission to play any
appreciable role. We would emphasize that all our estimates are based on
a Wien spectrum, so that they provide upper limits on the double Compton
effect for the Cyg X-1 system, whose spectrum is much softer (Figure 4).

5 Comptonization in Weakly Relativistic Plasma
Astrophysicists encounter weakly relativistic (semirelativistic) plasma in

the nuclei of galaxies and in y-ray burst sources (Klebesadel et al. 1973,
Mazets and Golenetskif 1981). The Comptonization of low-frequency pho-
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tons naturally represents one of the chief mechanisms generating the emis-
sion spectra of these objects.

For high temperatures and small optical depths the analytic treatment
of the problem becomes rather crude. We have performed several calcu-
lations, assuming spherical geometry; Figure 31 shows the results for
kT, = 50 and 100 keV and selected 7.

Observers may be interested in our efforts to simulate the x-ray spectrum
of the nucleus of the radio galaxy Centaurus A (Baity et al. 1981), whose
spectral index o = 0.6. These attempts are illustrated in Figure 32. In one
case the low-frequency blackbody photon source has a temperature
kT, = 1078 mc? in the other case, kT, = 1.4 keV. Note that at low ener-
gies (hv < 10 keV) the second model fits the observations much less
adequately—even if a correction is applied for photoabsorption. In the
first case kT, = 100keV, T = 1.5;in the second, kT, = 256keV, T = 0.55.
The geometry again is spherical. Most of our information on the plasma
temperature comes from measurements in the high-energy range, v = 300—
1000 keV.

6 Comptonization in Ultrarelativistic Maxwellian Plasma

From the curves plotted in Figure 8 it is clear that plasma will become.
ultrarelativistic as soon as temperatures kT, = (1-2)mc? are reached: recall
that y = 3kT/mc? in the ultrarelativistic limit. Interest in studying the
Comptonization process in ultrarelativistic plasma has been accentuated
by the detection of a powerful flux of hard v rays (hv = 1-6 MeV) coming
from the nucleus of the Seyfert galaxy NGC 4151. We have sought to
model the observed spectrum (Perotti et al. 1979, White ef al. 1980), and
the results are presented in Figure 33. A good fit is obtained if kT, = 4mc?
and T = 0.4. The low-frequency photon source is assumed to have a
blackbody spectrum with kT, = 1075 mc?.

It is enigmatic that the spectral region 1 MeV < hv < 10 MeV, which
dominates the radiant energy flux, makes hardly any contribution to the
radiation-pressure force. The radiation pressure derives almost entirely
from the 1-20 keV interval (according to Table III, if kT, = 2 MeV the
contribution of energies Av =~ 2 keV will be 78 times the estimate given
by the Thomson approximation).

This section describes calculations of the radiation spectrum that will
result when low-frequency radiation undergoes multiple scattering by weakly
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Figure 33 Simulation of the x- and +y-ray spectrum of the nucleus of the Seyfert galaxy
NGC 4151 for kT, = 4mc?, v = 0.4, kT, = 10~°mc?. Dots, experimental data (Perotti er
al. 1979, White et al. 1980); error bars omitted. Spherical plasma cloud, central photon
source.

relativistic and relativistic electrons in plasma clouds whose Thomson-
scattering optical depth ranges between 107* and 10. All the calculations
have been performed by the Monte Carlo method.

6.1 Statement of Problem

Let a spherical cloud of radius R contain a uniform density N, of Maxwellian
electrons at temperature kT, = nmc?, where m denotes the electron mass.
The basic parameters of the cloud will be its optical depth T = oN.R to
Thomson scattering and the dimensionless temperature n, which may be
either greater or less than unity. At the center of the sphere place either a
low-frequency blackbody source having a temperature T, < T, or a hard-
radiation source with a power-law spectrum [, « v~* (Sec. 7). Compact
low-frequency sources, whatever their actual nature, will usually experi-
ence heavy self-absorption at low frequencies, while their intensity will
drop steeply in the high-frequency range; a Planck distribution should
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provide a reasonably good model for simulating such spectra. A Max-
wellian electron energy distribution is evidently more typical than a power
law for problems of accretion onto black holes and neutron stars. T Takahara
(1980, 1981) and Lorentz (1981) have lately carried out calculations of
this kind for the case of a disk geometry.

6.2 Results of Calculations

Figures 34-37 display the spectra calculated for the radiant intensity I,
[erg cm™2 sec ™! Hz~!] emerging from a cloud with an optical depth in the
range 107* < 7 < 10 and a temperature n = kT,/mc* = 4, 2, 1, 0.5,
respectively. The radiation temperature of the central source is taken to
be kT, = 10~ mc?.

6.2.1 Basic Properties of Spectrum The frequency of a photon will
increase in proportion to y? each time it is scattered. As Figures 20 and
34-37 demonstrate, the main contribution to the integrated spectrum (all
scattering events combined) comes from scatterings by electrons whose
energy is well above average (y > 3n, in the ultrarelativistic case). Even
if the optical depth is very small, multiple scatterings will determine the
form of the integrated spectrum at high frequencies. For very small T the
intensity drops exponentially in each segment of the spectrum—a conse-
quence of the Maxwellian electron distribution. As T increases the spectrum
begins to flatten out, and when T > 3 it approaches the Wien law /, «
exp (—hv/kT,), weakened on the high-frequency side by the shrinkage of
the scattering cross section and the rise in the photon escape probability,
according to the Klein—Nishina formula. If T =< 1 and n > 0.2, a good fit
to the integrated radiation spectrum over a wide frequency range is given
by the power law I, = v~* with a single spectral index a, which can be
expressed as a linear function of log 7

log v 0.2

= - ——2 4 = .
log (12n% + 26n) n ©.1)

6.2.2 Removal of Energy from Electrons by Radiation The luminosity
L = 4wD? [ Idv of a source (D is the distance of the source) characterizes

1If 7 is small, the computed curves are insensitive to the distribution law of the radiation
sources over the sphere.
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Figure 34 Comptonization of low-frequency radiation (kT, = 10~°mc?) in a spherical cloud
of relativistic plasma at a temperature n = kT,/mc* = 4.
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met = 2.



6 @ 6 w0 w 5T 00 0 0 10 eV
op—o L0 PP PR AR NS, S
-2 -2
- %= 0.000¢ -4 2= 000/

a=2 =2
- -6
-& iy
-r2
Lt
-%
I ~18
L -20
L
L2
-fo
-12
-14
-1
A
To10, = -0.26
-6 Wien -6

-4 -6 4 “2 0 2 -8 -¢ - 0 4

w7 b (hv/me?)

Figure 36 Comptonization of low-frequency radiation in a plasma cloud with n = kT,/

mc? = 1.

291




1075 103 107 10° 10° 11075 103 10’ 101 10° kaV

ot .

-2 4 -2 1

4 -4

64 Tx0.000¢ 6 T =0.00¢

] ondy =29

-4 4 -2
P12 -2
|
-t .
|- 76 -1

“ l -1t
-20 t-20
L

0
f-3’¢-0.05
. ———
T=5 as-0.05
-4
4 -6 <-4 -2 o 2 T -6 -4

e
[Fe63] “Ghy Im®)

Figure 37 Comptonization of low-frequency radiation in a plasma cloud with n = kT./
mct = 0.5.

292



MONTE CARLO TECHNIQUES 293

the rate at which the photons are withdrawing energy from the electron
gas:

L—L,=L - 411-sz L(t = 0) dv. (6.2)

0

During scattering the number of photons will be conserved. If the photons
initially have a Planck spectrum, then L, = 2.7 kT,N,, where N =
4wD* [§ (I/hv)dv represents the number of photons emerging from the
source per unit time; 2.7 kT, is the average energy of a low-frequency
photon. For large optical depths (1 — ) a Wien emergent spectrum will
develop; the mean photon energy will be 34T, so that L, =~ 3N.kT,. Figure
38b shows the L(r) relation calculated for several values of n = kT./mc>.

6.3 Spectral Index o: Analytic Estimate

When scattered by ultrarelativistic electrons of energy ymc?, a photon will
increase its frequency by a factor %, on the average. For a Maxwellian
electron energy distribution suppose that the mean relative increase in
photon frequency is v'/v = an?, where the coefficient a depends weakly
on 7 and n. After k scatterings the effective rise in frequency will be v/
vy = d'n*, so that k = log (vi/vy)/log (an?). On the other hand, if the
cloud has a small optical depth then the probability of a photon experiencing
a single scattering will be 1 — e™7 = 1, while the probability of k scat-
terings will be of order 7. The radiant intensity at frequency v, will naturally
be proportional to the probability of k scatterings:

1) = 1wyt = I(we)(vilvo)~°, (6.3)

where a = - log 7/log (an®)._In Figure 38a, the slope of the line for
n = 4 is approximately lVlog y?, where the quantity y> = 12n® if the
relativistic electrons have a Maxwellian spectrum. This opportunity for
obtaining an analytic estimate of «, first published several years ago
(Pozdnyakov et al. 1977), was pointed out to us by Ya. B. Zel’dovich.

7 Traversal of Plasma Cloud by Hard X Rays

At the center of a plasma cloud having T = 10 and kT, = 0.006mc?, place
a source of hard x rays with the power-law spectrum /, = v~*, Many of
the photons will have an energy exceeding that of the electrons, and on
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Figure 38 Comptonization of low-frequency radiation in a spherical cloud of relativistic
plasma. a) Spectral index « as a function of log 7 and n; b) luminosity L as a function of
log 7 and n.

being scattered they will deliver some of their energy to the electrons:
Av/v = — hvimc*. By applying the Kompaneets differential equation one
can solve a problem of this kind for the case of a homogeneous, infinite
medium filled with plasma. According to the solutions obtained by Illar-
ionov and Syunyaev (1972) and Arons (1971), after the time interval ¢
corresponding to the average number of scatterings T = oN,cf the inten-
sity of the radiation at frequencies hv > mc?t should fall off sharply.
The authors have employed the Monte Carlo method to calculate the
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emergence of hard radiation from a plasma cloud, taking into account both
the downward motion of the photons along the frequency axis and their
displacement in space. On the average, a photon will be scattered ap-
proximately 12 times in the cloud. One might think that photons more
energetic than mc?/+* would not escape from the source, in view of the
recoil effect as well as the solution of the kinetic equation for a homo-
geneous medium. Nevertheless, there is a finite probability, e, for direct
escape of a photon from the cloud. When the photon escapes it will, of
course, maintain its same frequency. Thus the escape of photons scattered
fewer than the average number of times (~ 7?) in the cloud will determine
the form of the spectrum at high frequencies (hv > mc?/7?).

For high-energy photons the Klein—Nishina decrease in the scattering
cross section will serve to lengthen the photon free path and to increase
the relative intensity of the emergent radiation. As a matter of fact, the
hard—x-ray tail observed in such sources as Scorpius X-1 is sometimes
attributed to passage of a portion of the hard photons emitted by the neutron-
star surface through a hot, rarefied plasma cloud near the Alfvén surface
of the star.

Figure 39 demonstrates how an initial power-law radiation spectrum
with a sharp low-frequency cutoff will be affected in the low-frequency
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Figure 39 The transformation experienced by a power-law spectrum (straight dot—dash
lines) of hard radiation as it passes through a spherical plasma cloud with kT, = 0.006mc?
and a Thomson-scattering optical depth 7+ = 10. The dashed curves correspond to direct
photon escape and to the contribution of photons scattered no more than 30 times. Central
photon source.
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region by Comptonization and by blurring of the boundary due to Doppler
shifting as the photons are scattered by the hot electrons. In a cool plasma
cloud with a large optical depth for scattering, hard radiation will be:
thermalized, forming a Wien spectrum (Figure 40). One other problem of
much interest concerns the angular distribution and polarization of hard
radiation that is reflected by a cool plasma layer (Bai and Ramaty 1978).

8 Multiple Electron Scattering in Non-Maxwellian, Ultra-
relativistic Plasma Cloud

8.1 Power-Law Electron Energy Distribution

The possibility of multiple scattering also has to be considered in connection
with the inverse Compton effect in clouds of relativistic electrons with a
power-law energy spectrum that may occur in radio galaxies and quasars.
If the electrons have a power-law spectrum dN/dE « E~P with a low-energy
cutoff E > Ey,, then either of two mechanisms can produce a power-law
radiation spectrum [, x v~°,

It is well recognized that single scattering of isotropic, low-frequency
photons will yield a spectral index a = 4(B — 1). In fact, when scattered
by a relativistic electron a low-frequency photon will, on the average, rise
in frequency to v' = ay?v, where y = (1 — v¥c? "2 The probability
of the photon being scattered by an electron whose energy lies between y
and y + dvy is approximately orKy~PR dv, since N.dy = Ky~® dy. Nat-
urally this formula also expresses the probability that a photon of initial
frequency v will reach a frequency between v’ and v' + dv’. To find how

o5 5 50 500 keV

b1,
N

-4

-4 T -21 T b
l’(hv/mc‘)

Figure 40 A test calculation illustrating the downward shift of photons along the frequency

axis in plasma with T, < T.. An initial photon distribution / was specified as a Planck

spectrum with kT, = 0.1mc*. Comptonization in a cloud with 7 = 20 and &7, = 0.01mc?
then produced the near-Wien spectrum 2, with T, = T..
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the intensity depends on frequency one need only express v’ in terms of
Y- Since y = (v'/av)"? and dy = $(avv')""2dv’, we can determine the
frequency dependence of the number of hard photons in the interval o',
v’ + dv’) emerging from a cloud with a negligible optical depth for scat-
tering: N(v') « y~P dy/dv o« v=®+Y2_ Hence the intensity of the hard
radiation will be I,(v') = hv'N(v') < v=®-D2_ I this case the power-law
frequency dependence of the radiant intensity reflects the power-law energy
distribution of the electrons. The problem was first solved rigorously by
Ginzburg and Syrovatskii (1964).

On the other hand, as shown in Sec. 6.3, if photons are multiply
scattered in a cloud with T < 1 by the most abundant electrons, those with
E =~ Enpn = Ymomc?, then the spectral index will become o = — log 7/
log Z;. Clearly multiple scattering will play the dominant role if
B> 1 — log 7/log Yy, For example, in a cloud with T =~ 10~3 and
Ymin = 30, multiple scattering will control the form of the spectrum if
B > 3;fort = 0.1 and y,;, = 10, that will be the case if B > 2. In these
instances, calculations will give results not much different from the case
of a Maxwellian spectrum.

Figures 41 and 42 show sample cases computed numerically to illustrate
the effects discussed above. The spectrum in Figure 41 is formed as each
photon of blackbody radiation with kT, < mc? undergoes single scattering
in a cloud by ultrarelativistic electrons having the distribution dN(p)/dp x

Planck_ .

Planck 4
KT =40 "mc?

KT, =46 me

a%aso o*=0.50

-4 ' . . . r . - . . r - . ¥
ly(hv/mcg)

Figure 41 Spectra formed through single scattering of low-frequency photons with a black-
body spectrum by ultrarelativistic electrons with a power-law (8 = 2) energy distribution
over the range 30 < y < «. The two spectra shown have been calculated for the same
electron distribution but for different temperatures of the low-frequency radiation: kT, = 1073
mc* and kT, = 107* mc?. The first spectrum corresponds to the analytic expressions obtained
in the Thomson limit, allowing for the Doppler change in the photon frequencies; the second
demonstrates the combined role of the Klein-Nishina decrease in the scattering cross section
and the recoil effect (which will influence the amount by which scattering alters the photon

frequency).
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Figure 42a The role played by multiple scattering in a cloud of ultrarelativistic electrons
having a power-law energy distribution of the form y~* exp (—v,/-y) and various Thomson-
scattering optical depths 7. Curves 7, 2, 3 indicate the contributions of the first, second, and

third scatterings. The direct-escape spectra at the left are proportional to the radiation spectrum
of the low-frequency source.
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Figure 42b Lower panel, the relativistic-electron spectrum specified by the expression
N(y) = Ky e %", The spectrum peaks at y = 12; by y = 6000 it has steepened to N(y)
o« 735, The upper panel demonstrates that the main contribution to the Thomson-scattering
optical depth of the cloud comes from electrons for which 10 < y < 100.
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p~% that is, B has been set equal to 2. The results of this test calculation
agree completely with the analytic theory of the inverse Compton effect:
the spectral index of the hard radiation is o = #(B — 1) = 0.5. If the
photon source has a high temperature, relativistic effects will become
significant; the cross section will diminish according to the Klein-Nishina
formula and the law of energy exchange will be altered.

Some useful information will be found in Figure 42. Calculations have
been performed for a low-frequency photon source with a Planck spectrum
(KT, = 107%mc?). The relativistic electrons have been assigned a spectral
index B = 2.5 (corresponding to the electrons responsible for the radio
emission of radio galaxies). A cutoff energy vy, = 30 has been adopted,
with N(y) « vy~ exp (~~y/y). For values y > 6000, the energy index has
been replaced by B = 3.5. Notice that as the optical depth increases the
contribution of the second scattering steadily grows, and a change occurs
in the spectral index of the x and +y rays. The values of 7 given in the
figure correspond to the simple Thomson formula T = orV.R, and only
relativistic electrons have been included in the calculation.

Actually we are concerned here with the Thomson-scattering optical
depth 7, of the relativistic component in the cloud. This quantity clearly
should be defined as follows:

T = oR fw Ke Yy Bdy = o RKy}™® fyo xF Zedx, (8.1)
1 0

where dN, = Ke~ "y~ Bdy specifies the energy distribution of the rela-
tivistic electrons; [ dN, represents the electron number density. In the
particular case B = 2.5 we have

Vn
=5 orRKvyq 3. (8.2)

Beyond question, however, if along with the relativistic electrons the
source contains nonrelativistic plasma with T < 10!, the emergent radia-
tion spectrum will be decisively altered, since the probability of multiple
scattering will rise.

Indeed, suppose the cloud has optical depths T < 1, 1, < 1 with respect
to nonrelativistic and relativistic electrons. Then the probability of a photon
escaping from the cloud immediately after its nth scattering will be ap-
proximately (t + 1)1 — T — 7). Using Newton’s binomial theorem we
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obtain the following probability of escape after r scatterings by relativistic
electrons:

LS n! . _oT(l =1 — 1)
T z:: An -7 G777 = (1 — 7y (8.3)
Denoting the probability (8.3) by
pr) =71 -7 (1~ 1~ 7)), (8.4)

and writing the photon escape probability in the absence of cool plasma
as p(0) = 15(1 — 75), we obtain the ratio

pA7) 1l -7 -1
= . 8.5
p0) (1 -1 — 7! ®-)
If 1y <€ v < 1, the ratio (8.5) will have the leading terms
pA7)
— =14+ rr + O(1?. 8.6
pA0) ) 8.6)

Thus the influence of the cool plasma will increase with the scattering
multiplicity r. One should recognize that because of the recoil effect scat-
tering by the cool electrons might also significantly distort the radiation
spectrum and serve to warm the cool component.

8.2 Monoenergetic Electrons

Calculations have been performed for the following model. A cloud of
relativistic electrons has a Thomson-scattering optical depth 7,. At its center
is a low-frequency photon source with kT, = 107 "°mc? (two upper panels
in Figure 43) or kT, = 100 eV (lower panel). The electrons are mono-
energetic, with y, = 1000. We are interested in the spectrum of the pho-
tons emerging from the cloud.

The spectrum of Planck photons that have been scattered once by mono-
energetic, ultrarelativistic electrons can easily be calculated analytically in
the Thomson approximation. In this way we obtain the solid curve shown
in the middle panel of Figure 43 for 7, = 102 and the dashed curve in
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Figure 43 Radiation spectrum formed through Comptonization of low-frequency blackbody
photons in a cloud of monoenergetic electrons (y, = 1000), for several different optical

depths with respect to scattering. In the two upper panels the photon source has kT, = 10~
mc.
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the lower panel. Clearly in the first case we have an excellent fit to the
Monte Carlo results; this agreement served as a check on the calculation.
In the lower panel, however, the Monte Carlo curve differs radically from
that based on the Thomson approximation—a consequence of the Klein—
Nishina corrections to the scattering cross section and the recoil effect,
which diminishes the buildup of energy by a photon as it is scattered by
ultrarelativistic electrons (compare Figure 8). As a result of these effects
the contribution of the third and fourth scatterings to the integrated radiation
spectrum turns out to be very small, even when 7, = 1. The accumulation
of photons in the energy range hv ~ yymc? which might have been expected
actually does not take place. Evidently even in the case 7 > 1 the devel-
opment of a Wien spectrum will be unlikely.

9 Monte Carlo Techniques for Comptonization Problems

The term Monte Carlo methods refers to numerical procedures for solving
mathematical problems by modeling of random variables. Other names
are in use as well: synonyms include the method of statistical, or stochastic,
tests. In fact, there is no universally accepted definition of Monte Carlo
methods. Without dwelling on the advantages of the definition offered
above, let us outline some of its features.

In the first place we would emphasize that Monte Carlo methods are
numerical techniques; thus they compete with other numerical procedures
but not with exact, analytic solution methods.

Second, one can apply the Monte Carlo approach to mathematical prob-
lems of any kind, not just to those of probabilistic character. It is important
to understand that in many cases simulating a probability process is not
the best way to solve problems associated with that process. On the con-
trary, by renouncing simulation one can sometimes manage to develop
considerably more efficient methods of calculation. '

Such methods are indeed exemplified by the successful application of
Monte Carlo techniques to Comptonization problems. Figure 20, for in-
stance, illustrates a radiation spectrum calculated numerically in which the
intensity covers the full range from 10~! to 10~2; yet not even a modern
computer is capable of determining event probabilities lower than, say,
108 by simulating those events.

Third, the definition itself implies that before attempting to cope with
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specific problems by the Monte Carlo method one must learn how to model
various random variables on a computer.

A fuller explanation of Monte Carlo techniques in general will be found
in a book by Sobol’ (1973).

9.1 Modeling Random Variables

Pseudorandom numbers. A sequence of independent values &, &,, . . . of
the random variable £ distributed uniformly on the interval (0, 1) are called
ordinary random numbers. By using functions of the type g(&,), g(§,, &),
. . . one can construct random variables having other distribution laws.
The process of computing values for any random variable by means of
ordinary random numbers is termed modeling, or ‘‘drawing,”’ the random
variable.

The concept of ‘‘real’’ random numbers is a mathematical abstraction;
there are no such numbers in nature. In place of ‘‘real’’ random numbers,
calculations make use of pseudorandom numbers: numbers computed from
specified formulas (thus they are not random at all, in the usual sense of
the word) but satisfying some set of tests just as though they were “‘real”’
random numbers.

The most widespread procedure for obtaining pseudorandom numbers
is the method of residues (also called the congruential method or the
multiplicative method) proposed by D. H. Lehmer. That is how pseudo-
random numbers have been computed in our own investigations.

Method of residues. We define a sequence of integers, beginning with
my = 1, by means of the expression

m = 5"m,_, (mod2%), k=1,2,...;

in other words, m; is the remainder left when 5'7 m,_, is divided by 2%.
Our pseudorandom numbers will then be the quantities

gk = 2—40 m.
Method of inverse functions. This method should be considered the basic

procedure for modeling random variables. Suppose we require values of
a random variable whose distribution function is F(x).
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Let x = G(y) be the function inverse to the function y = F(x); then
the expressionn) = G(§) will define a random variable with the distribution
function F(x). In fact, the probability

¥n < x} = KGE) <x} = 9§ <F} = F),

since & is distributed uniformly on the interval (0, 1).

Example. The free path \ of a photon in a homogeneous medium is a
random variable conforming to the exponential law P\ < x} =
1 — e~* where \ is the mean free path. The method of inverse functions
gives us an expression for modeling the free path of an individual photon:
A= —=NIn (1 — §. Since the random variables § and 1 — & have the
same distribution, we can simplify this last expressionto: A = —A In &

One special case of the inverse-function method is the following tech-
nique for modeling random variables with a discrete distribution. Suppose
we require values of a random variable 1 which may take any of a finite
or infinite set of values x,, . . ., x,, . . . with the probability p,, = ${n = x,}.
Naturally Zp,, = 1.

It can be proved that in this situation the relation n = G(§) will yield:

m=x if £§<p,
m=x, if pysE&E<p +p,
m=x; if pp+p,<E<p +p+ ps,

and so on.

Example: photoabsorption. If a photon has an energy hv > 7 keV, its
photoabsorption by an iron ion will, with 0.34 probability, be accompanied
by the emission of a Ka photon, whose energy Av = 6.4 keV. To model
the outcome of a collision between the original photon and an iron ion,
we draw the next random number . If it turns out that £ < 0.34, we
consider that a Ko photon will be emitted; if & = 0.34, it will not be.

1The function F(x) = ${n < x} is nondecreasing, but not necessarily continuous: it may
have discrete jumps and intervals of constancy. In cases where it is not evident how to
construct the inverse function, one may use the following generalized definition: G(y) = inf
x, the lower bound to be taken over the set of all x such that F(x) > y.
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The inverse-function method enables one to simulate multidimensional
random variables. Suppose we require values of a random vector (7, . . .,
M.) whose density p(x;, . . ., x,) is known. Then we represent this density
as a product of conditional densities, say p(x, ..., x,) =
Pix)PA X )ps(slxy, x5) © ¢ ¢ puxalxys Xa, . . ., X,_), in arbitrary order.
Next we consider the conditional distribution functions

Fi(xlxl’ X)) = f Pi(t|x1, ce X)) dt

which correspond to these densities, as well as the functions x = G(y|x,,

., X)) inverse to y = F,-(x|x,, . . ., X;—;). Using n random numbers
&, . . ., &, we can evaluate the components of the vector (v, . . ., M,)
successively from the relations m; = Gy(&), M = Gy&MY), .. . ,

M = Gn(gnl'nl’ cr nn—l)'

Unfortunately, it is not uncommon for the inverse function G(y) to take
an excessively cumbersome form, and one has to look for other ways to
model the corresponding random variable. To speed up the calculations
one may, for example, compile a G(y) table, and later evaluate = G(§)
from the table. But even this approach is far from universal: one often
encounters families of distribution functions that depend on parameters,
and under such circumstances one must cope with multidimensional tables.

Method of superposition. Suppose we want to obtain values of a random
variable 1 whose distribution function F(x) can be represented as a su-
perposition of distribution functions F,(x):

Fx) = D ¢, Fx),

m

where all the ¢,, > 0, and Z¢,, 1 (either a finite or an infinite number
of terms). Denoting by G, (y) the function inverse to y = F,(x), we in-
troduce the random number o, which may take the valuesa = 1,2, . ..
with probabilities o = m} = ¢,

We define the following procedure for drawing values of m: we select
two random numbers §;, &, and using & we draw a number a. From &,
we now find the value of = G,(£,). The distribution function of n will
then be F(x). )
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The validity of this procedure is ensured by the formula for the total
probability:

M <xt = ¢n<xa=mdHa=m= > Fu(¥)c, = F(x).

m

Example. When photons are scattered by cool electrons the scattering
angle 0 will obey the Rayleigh law: the random variable b = cos 6 will
have the probability density p(x) = §(1 + x?), for —1 < x < 1. If the
inverse-function method were applied to this example, we would have to
solve the cubic equation p*> + 3p + 4 = 8£eachtime we needed a value
for . Wlth the superposition method, by setting p,(x) = 3, p,(x) = 3p2,
¢ = 4, ¢, = } we obtain the explicit modeling expressions:

265 -1 if &<4%,

"Tlog - e it 6=4

Multidimensional modeling functions. Rich opportunities are avail-
able in the simulation of random variables if one takes advantage of a
more general type of modeling function: m = g(&,, &), n = g(&;, &, &),

. In fact, the superposition method relies on a function of the form
n= g(gl, &,). However, few general methods of this kind have been
worked out, and we limit attention to a single example (without proof).

Example. A random variable v will conform to a gamma distribution if
its probability density

m

I'(m)

px) = xmt e~ 0<x<oo,

For integers m = n the quantity m can be modeled by the expression
M= —a'ln, - - &), while for half-integersm = n + }the modeling
formula becomes

n=—a'[Ine: &) + (n&.)sin’ 2uE, o).

Change of variables. In certain problems the modeling formulas can be
simplified by changing the variables (recall that in a one-to-one transfor-
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mation of variables the density will be multiplied by the absolute value of
the Jacobian of the reciprocal transformation).

Example: a random point distributed uniformly over the sphere
X2 + y* + z2 < R? Inside the sphere such a point will have the constant
density p(x, y, z) = (3wR®~!. If one attempts to use the representation
p = p(x)p,y[X)ps(zlx, y), one obtains very complicated modeling for-
mulas. However, the spherical coordinates of the point prove to be in-
dependent:

32sin 9 1
B 9’ = s Vs 2 i e = T
p(r, 0, @) = p(x, y, 2)r* sin 3 oo

and are readily modeled by the inverse-function technique:
r=§EPR, cos O = 2¢ — 1, ¢ = 27,

Example. 1t is not hard to verify that the last two expressions specify a
random direction, or, properly speaking, a random direction under cir-
cumstances such that all directions are equally probable. Hence the unit
vector v = {1?, v3, v3} can be modeled from the two random numbers §&,,

&
v = 2§ - 1, v = [1 — ()" sin 2 w§,,
W =[1 — )" cos 2mé,.

Rejection technique. Consider a random variable n-defined by the con-
dition

"1 = g(gl’ EER ] gm) lf (gl’ ey gm) e B, (91)

where B is some fixed region in m-dimensional space. To compute 1 from
expressions of the type (9.1) we choose m random numbers &, . . . , &,
and test the selection criterion (§,, . . . , §,) € B. If it is satisfied, we
compute n = g(&,, . . ., &,); otherwise we take a new group of random
numbers &, . . . , &, and test the criterion again.
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Equations (9.1) define the rejection technique for modeling m. The
selection probability

629{(&1"*"§m)}63

is called the efficiency of the technique (9.1). On the average m/é random
numbers have to be consumed in order to obtain one value of m from Eqgs.
9.1).

Rejection techniques are often used to simulate truncated distributions
or to select uniformly distributed points covering complicated regions. The
following algorithm, usually called the generalized von Neumann method,
has many practical applications.

Assume that the probability density p(x) in which we are interested can
be represented as a product of the form

p(x) = kp,(0fx), 9.2)

where k, is a constant, p,(x) is the density of an auxiliary random variable
1’ which we are able to model, and 0 < f(x) < ¢,.

Modeling algorithm. Select a pair of values 7', {’ such that ¢’ is uni-
formly distributed in the interval (0, c¢,) and is independent of ny'; if {’ < fig"),
thensetm = n'.

Proof. The number of pairs n', {’ for which x <’ < x + dx is pro-
portional to p,(x) dx; among these the number of selected values m = n/
is proportional to f(x). Hence the number of values of 1 falling within the
interval (x, x + dx) will be proportional to p,(x)f(x) dx, as required.

The efficiency of a rejection technique based on the representation (9.2)
is readily calculated:

o [fix 1
s =9 <= [ [Towerardy = o 03

Clkl.

We shall make use of the representation (9.2) in Secs. 9.4 and 9.5.

9.2 Calculation of Averages

The crude Monte Carlo method. In the great majority of the problems
that are handled by the Monte Carlo method, average values—mathemat-
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ical expectations—have to be calculated. Suppose that we are interested
in a certain quantity a. We shall devise a random variable m and a function
fm) such that the mathematical expectation of fin) is a; that is,

Mfm) =

From this last relation we can develop a Monte Carlo method to evaluate
a.

In fact, let my, . . . , My be independent values of the variable 1. We
form the estimate

1 N
N = IT/ g f(ns)
According to the law of large numbers, as N — « the estimate 6y will
converge stochastically to a. In other words, for large enough N, we will
have a = 0.

Error estimates. If the dispersion

Df(n) = Mfi(n) — &

is finite, then by the central limit theorem of probability theory the quantity
9y will be asymptotically normal, and its probable error will be given
approximately by

. = 0.675 VDRm)/N. 9.4)

Since |0y — a| > ry} = 0.5, K]0y — a| < ry} = 0.5 for all sufficiently
large N, the quantity ry provides a rough measure of the error. The error
itself, |8y — a|, can be two or three times as large as ry, but it can also
be smaller than ry.

The value of the dispersion appearing in Eq. (9.4) is readily estimated
in the course of calculating 0y, for

1 N
Mfm) = = >, f(ny);
N s=1

the dispersion need not be estimated to any great accuracy.
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Another way to estimate the error is the following. We divide the sample
Mis . .- . » My into several independent subsamples and calculate averages
for each of them. Regarding these averages as approximately normal, we
can estimate the probable error from a table of Student’s distribution.

Finally, the uncertainty of the approximation a = 6y can be assessed as
8y is being established, say by comparing the 6, values for N = 1000,
2000, 4000, . . . . This is the least rigorous procedure, of course.

Comparison of Monte Carlo methods. Equation (9.4) shows that as N
increases the probable error will fall off as N™"2. That is a slow rate of
decline: in order to develop one further decimal place the sample size N,
and hence the volume of computations, would have to be increased a
hundredfold. Clearly there is no hope of achieving high accuracy by this
route.

However, the same quantity a can be calculated by using different values
of m and different functions f(m), provided only that Mf(n) = a. From
Eq. (9.4) we see that if the number N of trials is fixed, then the probable
error will depend on the value of the dispersion Dfin). Much attention has
therefore been given in the theory of Monte Carlo methods to procedures
for choosing m and fin) so as to make the dispersion Dfin) as small as
possible; indeed, it is claimed that the accuracy of the Monte Carlo method
is defined by the dispersion Df(n).

But the expression for 8y still does not determine the calculation algo-
rithm; one requires a formula for modeling n by means of random numbers.
A Monte Carlo algorithm is completely specified by two relations:

1 &
A—/ E f(ns)’ m= g(gb §2’ L )

N=

Let ¢ denote the computer time expended in calculating a single value
of m and a single value of fin). The product ¢ - Dfin) is called the labo-
riousness of the Monte Carlo algorithm. If the total computer time T = Nt
is held fixed, then the less laborious the algorithm, the smaller will be the
probable error:

ry = 0.675 Vi - Dftn)/T.

Statistical weights. Assume that the random variable m has the proba-
bility density p,(x), so that

= f " Rop.wds.
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Select an arbitrary random variable { whose density p,(x) is positive at all
points x for which fix)p,(x) # 0. Then the expression for a may be written
in the form

a= [ someopas,

where the function w(x) = p,(x)/p/x) is called the statistical weight. In
view of the last integral above,

a = MAOwW(D).

Thus instead of averaging the values of f(m), one may take an average
over f({) with the weight w({) and use the estimate

Oy =

> FEIWL).-

2=

The dispersions of the two quantities f(n) and f({w({) differ, since

MfX(m) f " PP

whereas

MFHOWH)

f " PEWEP, 0.

It therefore is usually maintained that if the weight w < 1, the weighting
method will be advantageous, as it will diminish the dispersion.

That claim ought to be refined, however: the inequality w(x) < 1 cannot
hold for all x, for it is equivalent to the inequality p.(x) < p/(x). But these
functions are both normalized, with [p,(x)dx = [p/(x)dx = 1. Neverthe-
less, one can have a situation in which w(x) < 1 at all points where
f(x) # 0, or in which w(x) < 1 in the region of greatest importance.

Remark. 1t is not hard to show that we will have minimum dispersion
DF(w(L) if p(x) is proportional to |f(x)|p,(x). In practice, however, it is
not possible to choose such a density, because its normalization would
involve the integral f| f(x)|p“(x)dx, whose evaluation would be equivalent
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to calculating the required integral a. Using densities p,(x) qualitatively
similar to |f(x)|p,(x) is called importance sampling.

9.3 Statistical Weights in Radiative Transfer

Many problems that arise in radiative transfer theory can be handled by
introducing weights on the basis of purely physical arguments. If such
weights are used, the efficiency of the Monte Carlo method will sometimes
be much improved.

Particle-escape weighting. Suppose we are investigating the passage of
particles through a finite, homogeneous region G. From some point r;
within G let a particle begin to move in the direction €2, its energy
remaining unchanged as it traverses its free path. In our simulation we
would calculate the distance /; to the boundary of G (along the direction
1) and draw a value for the free path length A = A,. If \; > [, the particle
will be considered to have escaped; otherwise it will undergo a collision
at the point r;,; = r; + AL},

Now let us assign to the model particle a weightt w;. Knowing the
distance [;, we can readily calculate the probability that our particle will
escape from G: R\ > I} = exp (—1/\;)). We shall regard ‘a portion’” of
the particle, with weight w; exp (—1/\;), as escaping from G, while *‘the
remainder’” of the particle, with weight w;,, = w;, — w;exp (—1/ )_\,-), will
experience a collision within G. It is easy to see that the free path A within
G for the portion of the particle with weight w;,; will obey the truncated
exponential distribution N < x} = [1 — exp (—x/N)I/[1 — exp (= 1/
\))]. We therefore obtain a formula different from the one given in Sec.
9.1 for drawing a path length A = \; within G:

A= —NIn[l — &1 — e

With such a modeling technique the particle trajectory will theoretically
be infinite (provided absorption within G is absent or is taken into account
by weights; see below). In practice one will stop computing the trajectory
as soon as the cutoff criterion w;; < € is satisfied for preassigned e,
or as soon as the remaining particle ceases to interest us (for instance, its
energy may drop below some threshold).

A tremendous advantage is won by using such weights in problems with
aregion of small depth T < 1. Forexample, if T = 1073, simulation would

TIntuitively, one may consider a moving packet of w, identical particles.
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demand consideration of more than a million particles in order to obtain
only a few doubly scattered particles. On the contrary, when weighing is
introduced to allow for escapes each model particle will experience nu-
merous (theoretically, infinitely many) scatterings, but after each scattering
its weight will drop about a thousandfold. The energy spectrum of emergent
photons illustrated in Figure 20 was compiled from only N = 20,000
trajectories. This diagram shows the contribution of individual scattering
events to the spectrum as well as some of the probable errors (vertical
segments). Despite the fantastically low (from the simulation standpoint)
probabilities involved, the uncertainty in the results is held to a perfectly
acceptable level.

The contribution of multiply scattered photons to the spectrum will
increase with the value of 7.

Estimate of dispersion. Place a source of photons, which may undergo
scattering, inside a sphere of optical radius 7. We wish to calculate the
spectrum of the radiation emerging from the sphere.

Let A,; designate an event whereby a photon, immediately after its mth
scattering, escapes with an energy belonging to the jth energy interval,
and let S,; = ®A,,} be the probability of event A,,. The quantities S,,,,
Sm2» . . . will evidently determine the spectrum of those photons which
escape directly after their mth scattering.

Now let us consider the simulation scheme for calculating the S,,. In
selecting a photon from the source and modeling its fortunes we are in
effect calculating a random variable r,,; which will take the value 1 if event
A, occurs and O otherwise. Thus Mv,,; = S,,;, Dn,; = S,; — 8%,

If instead the probability §,,; is computed using the weights described
above, then each photon will make the contribution 1), = w,, exp (—1,/
A provided its energy after the mth scattering belongs to the jth interval;

otherwise 7,;, = 0. As before, we will have Mj,; = S,,.

Let g,, be an upper bound on the possible values of 1,,; that is, g,, = sup

w,, exp (—1,/\,). We will show that

DAy < gnDMyy 9.5)
In fact, .

D'f]mj = Mﬁrzn] - Srznj = qu'f]m] - qmsrznj - (1 - qm)Srznj
= qm(Smj S'2n!) - (1 - qm)Smp

and since g,, < 1 it follows that Dfy,; < g,(S,; — S2) = g,Dn,,.
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The estimate (9.5) explains the colossal decrease in dispersion (compared
with the simulation estimate) that will occur if T < 1:

m—1 _
Gn S wn =TT 11— exp(=4/M)] ~ (1 = e7) = .
i=0

And since the maximum probabilities in the spectrum S,,; will be of order
7 if 7 is small, they will have Dm,; ~ 7, Dfj,; ~ 7"

Large depths. Figure 40 illustrates a spectrum formed by radiation emerging
from a sphere with an optical radius * = 20. This spectrum has been built
up by repeated Compton scatterings within the sphere. The number of
trajectories included in the calculation is N = 500. The photon source is
placed at the center of the sphere; it has a Planck spectrum with kT, = 0.1
mc? (curve I). Curve 2, a Wien spectrum with kT, = 0.01 mc?, is obtained
in the limit T — . This example demonstrates that by using weights to
allow for particle escape one can deal with problems in which the depth
is very substantial.

Absorption weighting. Suppose that in a collision event a model particle
may be either scattered or absorbed, and assume that the absorption prob-
ability p, can be computed at any point of the collision. In a simulation
one would have to make a draw for the type of interaction in each collision;
for example, if § < p,, absorption would occur and the trajectory would
end, while if £ = p,, scattering would take place and the trajectory would
continue.

Alternatively, let us assume that prior to the ith collision the particle
has the weight w;. In the collision ‘‘a portion’” of the particle, with weight
p.w;, will be absorbed, while ‘‘the remainder,”” with weight w;, — pw;,
will be scattered. This modeling technique will lengthen the trajectory, but
the information that can be derived from each trajectory is far richer now:
instead of the whole particle being absorbed at a single point, we will have
a set of points with fractional amounts of absorption, reflecting to some
degree the manner in which absorption is distributed over the region under
consideration.

Example: photoabsorption (compare the example in Sec. 9.1). Instead
of modeling the outcome of a collision between a photon and an iron ion,
we now regard a Ko photon as appearing each time; but if the weight of
an absorbed photon prior to collision was w;, the weight of the resultant
Ka photon will be w;,.;, = 0.34w,.

Systematic sampling. Quite a few different procedures are available for
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introducing statistical weights into various problems (Sobol’ 1973). We
shall illustrate the situation by considering just one method, called sys-
tematic sampling.

Our task was to model in some fashion a hard radiation spectrum in
which the photon frequencies are distributed with a density p(v) = Av~?
for 50 eV < hv < 10 MeV. The inverse-function method easily enabled
us to derive a modeling formula, but when that formula was put into use,
practically no photons of energy above 1 MeV (the ones whose contribution
would have been of special interest) were produced, as the probability of
their being formed was only = 5 x 1073,

In this example it proved helpful to introduce statistical weights. The
frequency interval was divided into a finite number M of subintervals, and
frequencies for newly produced photons were drawn from all these intervals
in turn. To each such photon an initial weight w,, was assigned, proportional
to the production probability. in the corresponding frequency interval. With
this modeling technique the number N of model photons has to be a multiple
of the number M of intervals.

9.4 Modeling Photons and Electrons

Energy of Planck photons. At radiation temperature T, the number density
of photons having an energy E = hv is expressed by

1
2(03)

p(E) = BEXe”™ — )7,

where b = 1/kT,; {(3) = T 7m~3 = 1.202 is the Riemann zeta function.

The function (¢*® — 1)~! is easily expanded in powers of e, Intro-
ducing the normalized densities p,(E) = m’b’E%e~*"F, we can write the
expansion as

p(E) = (1.202)7" i m=p(E),

m=1

This expression shows that p(E) may conveniently be modeled by the
superposition method: each of the densities p,(E) represents a gamma
distribution and would be modeled by the formula given in Sec. 9.1.
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To draw a value for the energy E = hv we select four random numbers
£y, . . ., L4 From {; we define an auxiliary random number « such that

1 if 1.202¢ < 1,
— m—1 m
CTYm i D =1.2028 < D0,
1 1

where m = 2, 3, . . . ; then we set hv = — (kT./a) In (&,6:¢,). On the
average, {(2)/{(3) = 1.37 attempts will be needed to draw the number
a. A similar modeling algorithm has been used by Fleck and Cummings
(1971).

Momentum of relativistic electrons. The number of Maxwellian electrons
having momentum p is expressed by N(p)dp = exp [ — (p*c*> + mPc*)"?/
kT }dp. If all directions p are equally probable, the density of p will be
proportional to p? exp[—(p** + m*c*)"*/kT,]. Introducing the dimen-
sionless energy n = kT,/mc? and momentum v = p/mc, we have for the
density of m:

p(x) = Byx* exp (—%\/1 + x2>

where 0 < x < « and the normalizing constant B, is given in terms of the
Macdonald function by B, = [nK,(1/n)]~! (Abramowitz and Stegun 1964).

Low-temperature case (Sobol’ 1981). We change from the random var-
iable m to a new random variable, the energy of motion
{=WT+ % = Din;thusm = [nL2 + n0]". The probability den-
sity of { will be p(z) = Byne™""(2nz + n’z%)"(1 + nz)e *, which may
be expressed in the product form (9.2):

P2 = kipy (2)@2nz + n’2)"(1 + nz)e™ 3, (9.6)

where p;(z) = %e %3, so that {’ can easily be modeled. The constant
factor k, = 3B,ne ",

To construct a rejection technique corresponding to the representation
(9.6), one must prove that the functional factor in that expression is bounded.
That will not be true, however, for all n. Define Y(y) = 2y + y»2
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(1 + y)e ™ then one can easily verify that the functional factor in Eq.
(9.6) is Y(nz). The following statement holds regarding the boundedness
of {:

If n <%, then U(y) < 3(2n/e)"? for all y, 0 < y < . From this in-
equality we can formulate a rejection technique for modeling m:

If n < 0.29 (equivalently, if kT, < 150 keV), we select two random
numbers £,, & and compute the auxiliary quantity {' = —$% In §&;. Then
if the selection criterion & < 0.151(1 + n{")*{'(2 + n{')§, is satisfied,
we set 1 = [n{'(2 + n{')]'%; otherwise we select new &, &,.

The efficiency of this method is given by Eq. (9.3): &€ = 0.259n~Ze!"K,(1/
n). Some typical efficiencies are:

n | 029 025 020 010 0
& | 052 049 046 039 0.33

Curiously, the algorithm remains quite efficient as n — 0, relieving us of
the need to use the nonrelativistic Maxwell distribution with corrections
(Corman 1970) for very small n.

High-temperature case. A highly efficient procedure for modeling the
momentum in this case has been described by one of the authors (Sobol’
1976). For the density of m one adopts the product representation

p(x) = 2m°Byp, (0)f(), .7

where p,(x) = (2n%)~'x?¢~*". The functional factor is bounded:
1
fix) = exp [—— ;(VI + x2 - x)] =< 1.

The density p,(x) is the density of a gamma distribution with the pa-
rameter m = 3; an expression for modeling m’ has been given in Sec. 9.1.
The rejection technique corresponding to the representation (9.7) may be
formulated as follows. We select four random numbers §;, . . . , & and
compute the two quantities 7' = —n In (§,&8), " = —nIn (§,6E:E,).
If ") — (m')> > 1 we set 1 = m'; otherwise we draw new numbers

R %
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By Eq. (9.3) the selection efficiency & = (2n?)'Ky(1/n). Forn = 1 it
is very high (6 = 1 as n — =), but for small # it falls off rapidly:

n l 1.0 0.5 0.29 0.25 0.20 0.10

& | 081 051 021 0.14 0066 0.00l
/

The method is therefore recommended only for large n, when the foregoing
method is inapplicable—that is, for n > 0.29, or equivalently, for kT, = 150
keV.

Scattering cross section. The cross section o(x) = 2mr26(x) for scat-
tering of a photon by an electron is well established, but the conventional
equation,

4 8 1 8 i
s = (1 -~ -2+ 0+ 4> —
*6(x) ( x xz) A T T

(see below for the definition of x), is inconvenient for calculations when
x < 1 and is rather cumbersome to integrate. We therefore approximate
&(x) to high accuracy by means of the simpler functions

4+ 0.141x — 0.12¢* + (1 + 0.5x)(1 + x)72, x=0.5;
6(x) = [In (1 + x) + 0.06]x7!, 05 =<x=<3.5

In(1 +x)+05—-@Q+ 0.076x) "x!, 3.5 =x

The error of this fit is no more than 1 percent.
We will need below to evaluate the function ®(x) = [{x6(x)dx. By
integrating the approximations to xG(x) we obtain the computation formulas

2 + 0.047¢ — 0.03x* + 32(1 + x)~! 0<yx<0.5;
(1 +x)In( + x) — 0.94x — 0.00925, 0.5<x< 3.5
1L+ +x — &

— 13.16 In 2 + 0.076x) + 9.214, 3.5 < x.

P(x) =
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Photon mean free path. A photon of energy hv and with its momentum
in direction £} will have a mean free path

JN(p)dp

M= NJod — Q- vioN(pdp'

where the scattering cross section o(x) and the function N(p) have been
defined above. The quantity x = Hy(1 — - v/¢), with H = 2hv/mc?.

Since all directions of p are equally probable, we align the polar axis
with {) and introduce spherical coordinates p, 8, ¢ to obtain the expression

41fo e Y"pidp
0

A= - ,
ZTrNeJ' e‘”’"pzdpf a(x)[1 — (v/c) cos 0]d cos
0 -1

The integration over cos 0 is readily converted to an integration over x,
because if vy is fixed, dx = —Hvy(v/c)d cos 0. Then retaining the notation
of the preceding paragraph we find that

1 v 2ur? Hy(1 +v/c)
ox)|1 — =cos 0 dcos(-)=———’f xG(x)dx
J—l ( ) ( c ) (H'Y)ZU/C Hy(1-vic)

27 x=Hyl

= sz—\/—yz—_j [POLZE-,

where y* = vy = V42 — 1. )

We substitute this expression into the last formula for A, note that
7N, = $o¢N. = 0.375 1/R, and change from an integration over p to
an integration over <y (using p = mcV+y® ~ 1). As a result we finally
obtain for the mean free path:

Hsz e V' yVyr — 1dy
- 1

A= Hy

0.375 ~ fe-w [Cb(x)] dy
R 1 Hy~
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Even though the integral in the numerator can be evaluated exactly,
we have preferred to compute both integrals (numerator and denominator)
numerically at the same integration points. They are both of the form
JT e ¥(y)dy. The change of variables u = exp [(1 — <y)/n} transforms
the semiaxis (1, o) into the interval (0, 1), and the resulting integral can
be calculated from the rectangle formula:

) 1
f eV Y(y)dy = ne‘””f V(1 — nln u)du
1 0

ne—l/n N B - %
= —= - nl .
7 Zl v (1 nln Y )

B=

The factor ne™"" occurs in both integrals and cancels out.
The final computation formulas are as follows: ;
a) Abscissas of integration 93 = 1 — n In [(B — 3)/N], B=1,2,
.., N
b) The constant quantity

1 N
L S vErTT
8 = 03756/R) E, ¥ V%)

c) The general equation
gH?

T
2 ()]
B=1

x =

d) Case H < 1. As H — 0 the expression for A reduces to an indeter-

minate form, with lim A = (7/R)~!. We therefore supplement the expres-
H—-0

sion (c): if the largest abscissa used in the numerical integration, 4, = 1 + n
In (2N), and the energy H = 2hv(mc?)~! satisfy the condition 29,H < 0.01,
then instead of using the equation (c) we set A = (T/R)~".
. In our calculations we have adopted the value N = 40 (sometimes
N = 20).

Power-law relativistic-electron spectra. We shall regard the number of
electrons with vy values corresponding to the interval (x, x + dx) as given
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by N(x)dx = x(x)(vo/x)*? exp(—yo/x)dx, where 1 < x < =, The factor
x(x) = lxif x > v;; x(x) = 1/y,if 1 < x < +,. In our calculations we
have set vy, = 30, v, = 6000.

We now make the change of variables y = +yy/x, so that 0 <y < vy,,
and we introduce the new random variable 7 = v,/<. Then the normalized
density of m will be p(y) = ¢, W (y)y"%e™?, where W(y) = yox(x) and ¢, is
a normalizing constant. Defining k = +y,/v,, we may write ¥(y) = y for
0 <y<k,¥(y) = «kfork <y < v, Further, let us agree that ¥(y) = 0
for y > +y,; the density p(y) will then be defined for all 0 < y < o,

As an auxiliary quantity we shall adopt a random variable v/ with the
density p,(y) = 2n~ V%2~ (0 < y < ®), which represents a gamma
distribution with parameter m = §. We write the density p(y) in the product
form (9.2): p(y) = %com"?p,(y)¥(y), where the functional factor is confined
to the interval 0 < W¥(y) < k. Since we know how to model gamma dis-
tributions with a half-integer parameter m (Sec. 9.1), we arrive at the
following rejection technique for modeling m, and accordingly y as well:

a) Drawing three random numbers &, &,, &, we compute ' = —In
& — (In &) sin® 2m§;.

b)Ifk < m' <1y, sety = vy/m'.

¢) If n' < k, draw another random number &, and test the condition
k€, < m'. If it is satisfied, set v = +yo/m'; otherwise return to step (a).

d) If v, < 7m’, retumn to step (a).

According to Eq. (9.3) the efficiency of such a selection will be

2 1 K Yo
E=—1|—- M2e5dy + f 12¢=vd: ),
\/; <K,[) y 'y ) y 'y

and for our values of the parameters vy, and v,, & = 1.

Remark. With an electron spectrum of the type considered here, a change
should be made in the final expression for \: the factor e " in the numerator
and denominator should be replaced by N(y)/yV+y? — 1.

9.5 Modeling Compton Scattering

Selection of scattering electron. The probability density of the momenta
p of the scattering electrons is proportional to the quantity a(x)(1 — €2 - v/
¢)N(p) appearing in the expression for A. Since we are capable of modeling
the momentum p for a Maxwellian density, proportional to N(p), it has
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proved very convenient to apply a rejection technique (9.2) wherein the
density is represented in product form as p(p) = kN(p)Ap). Here
Ny(p) = N(p)/[N(p)dp is the normalized Maxwellian density; the func-
tional factor (p) = 6(x)}(1 — L - v/c), and the constant k, = 211-r§NeX.
It is easily shown that the functional factor is bounded: f(p) < 2 6(x) < §.

We have, then, the following method. Modeling the momentum p ac-
cording to Sec. 9.4, we compute v, x, and 6(x). We take one more random
number § and test the selection criterion £ < 0.3756(x)(1 — £ - v/¢). If
it is satisfied, p will be accepted; otherwise we choose a new p.

By Eq. (9.3) the efficiency of the selection will be
& = 32wrAN)"! = 2\7/R)~!. Forx < 1, when A = R/, we will have
& = %; but as x increases, with o(x) diminishing, the efficiency will de-
crease as well.

In our 1976-1979 papers we regarded the distribution of scattering
electrons as identical with the distribution of electrons in space, and we
took values for their momenta according to Sec. 9.4, for a density N,(p).
Actually that approach is tenable only if 7 is small and the temperature is
not too high. We are indebted to W. Wielczewski (Warsaw) for drawing
our attention to this inaccuracy. The results presented in this paper (except
for Figures 38) have all been developed by means of the rejection technique
described above.

Choice of coordinate system. Let the vector v = vhi + v}j + uvik.
Assume that p?> = (v))? + (19)* > 0, and introduce the unit vectors
wl = (Ui — vij)/p, t° = Wi + vy — p’k)/p, which together with
v? form an orthonormal triad. The direction of the vector {2’ may con-
veniently be expressed in the coordinate system v°, w?, t%

Q = pn've + (1 — p'H”2 (wlcos ¢' + t°sin ¢'),

where ¢’ denotes the azimuthal scattering angle, measured from the di-
rection w® in a plane perpendicular to v°.

By substituting the expressions for w’, t into this last equation, we can
readily obtain expressions for the components of €}’ in the stationary
coordinate system i, j, k:

Q= p'? + (1 — pH% '3 cos ¢ + 198 sin @),

2
1

p'vd + (1 — n'H%p Y (—vd cos o' + Vi sin @),

Q =p -1 - pHpsing'.
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The scattering angle can then of course be computed from the relation
ﬂ * Q’ = Q]Q{ + Qzﬂé + 0303,.

The joint distribution density of the random variables p’ and ¢’ is given
by p(p’, ¢') = o~ 'da/d€2. [In Sec. 2 we have given expressions for the
differential scattering cross section, Eq. (2.8), and the change in the fre-
quency of a photon when it is scattered, Eq. (2.4).] It is not hard to show
(Sobol’ 1978) that the joint density can be written in product form:

1
p(n', @) = p ', Y, 9.8)

where the normalized density p,(p’, ¢') = [4mwy* (1 — w'v/c)’]"! and the
functional factor Y is bounded:

Y = (/%)X = 2. 9.9)

The factor 1/6 is independent of ' and ¢’, and plays the role of a constant.
Modeling algorithm. Since the random variables ., ¢; with their density
pi(p’, ¢') can easily be modeled by the inverse-function method, the
representation (9.8) enables us to devise a rejection technique for modeling
n’, ¢'. We assume that the quantities x and p. have already been computed.
a) We take two random numbers £,, & and compute a possible direction
of scattering [for the density p,(n’, ¢)):

o U/C + 2§| - 1
T 1+ WoE - 1)

¢ = 27§,

(rather than i, ¢; we shall write n', ¢’, keeping in mind that these are
not yet the final quantities).

b) We compute the vector £2’, the scattering angle - €)', and then
the ratio

=

' _ . ' -1
_ [1 . h(l — Q ﬂ)]

x ymc* (1 — p'v/c)

as well as the factor Y from Eq. (9.9).
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¢) We draw a random number &; and test the selection condition 2&;, < Y.
If it is satisfied, the direction {2’ will be accepted, and the new photon
energy will be hv' = x'[2y(1 — wn'v/c)]”'mc?; if instead 2&, = Y, we
return to step (a).

By Eq. (9.3) the selection efficiency & = 36(x). As x — 0, & tends to
%, but as x increases the efficiency diminishes: &(10) = 0.13,
&(100) = 0.025. In general, &(x) ~ (2x)"'In (x + 1) as x — o,

Remark. The scattering equations have here been written in a coordinate
system different from the one used previously (Sobol’ 1978); they enable
one to calculate all three components of {2', not just the angle between
€)' and r. These equations may also be used in the case v = 0: the vector
v’ can then be chosen arbitrarily, provided only that v* # k.

9.6 Sample Calculation Procedure

As an illustration of the Monte Carlo approach we shall describe a scheme
for calculating a very simple model of a compact x-ray source.

Statement of problem. An isotropic source of low-frequency photons
with a Planck spectrum and a radiation temperature 7, is placed at the
center of a sphere of radius R filled with Maxwellian electrons whose
temperature is T,. The optical depth T with respect to electron scattering
is specified. We are to calculate the spectrum of the radiation emerging
from the sphere.

We begin by adopting a grid of energy values E = hv (in the calculations
discussed in this review we have usually set E, = 0, E; = 107°+02-D
forj=1,2,...,6l1,and Es, = 10", a cutoff parameter €, and several
values for the number of trials N.

Start of trajectory. Setting xo = y, = 25 = 0, = 1,0, = Oy = 0,
wp = 1, we apply the equations of Sec. 9.4 to find a value for hv,.

Transition from ith to (i + 1)-th collision (i = 0, 1, . . ).

a) We compute A, from the equations of Sec. 9.4 (the abscissas Yp of
the numerical integration and the constant g are evaluated only once, before
starting to calculate the trajectories; the number N should be preassigned).
We compute the distance [, = —(r; - ) + [R? — r? + (r; - ©)*]"* to
the boundary of the sphere (r; = {x;, y;, z}), and then the escape probability
Li=exp(— U/ ). To the photon escape spectrum (in the energy interval
containing hv;) we add the weight w,L; of the ‘‘escaping part’’ of a photon,
and we compute the weight w; ., = w;, — wi,; of the *‘scattered part’’ of
the photon. If w;,; < €, we will stop following the trajectory; otherwise
the calculation will continue.



326 L. A. POZDNYAKOV, I. M. SOBOL’ and R. A. SYUNYAEV

b) Drawing a value for the free path \;, = —\;In [l — &1 — L)], we
find the next scattering point r;., = r; + AL},

¢) We select a momentum for the scattering electron. First we take
a random direction for the wvelocity: v} = 2¢ — 1,19 =[1 —
(vA"2 sin 2mE,, V) = [1 — (V)*]"2 cos 2mE,. Second, we take a pos-
sible value for the momentum m = p/mc, using the equations of Sec. 9.4.
Then we calculate the quantities y = (m? + 1)'2, v/c = n/y, p = V' - Q,
x = 2y(hv/mc®)(1 = pu/c), 6(x) as in Sec. 9.4. We draw the next ran-
dom number £ and test the selection condition £ < 0.3756(x)(1 — wv/c).
If it is satisfied, the scattering electron will be accepted; otherwise we start
step (c) over again.

d) From the equations of Sec. 9.5 we model the scattering, and we set
Q. =9, vy, = ',

Emergent radiation spectrum. We introduce the auxiliary quantity 3(i,
J), equal to 1 if hv, belongs to the jth energy interval, and O otherwise.
Following through one photon trajectory, we obtain the set of quantities

©

B(j) = X, wL:d(, j)

i=0

characterizing ‘‘the parts’’ of the photon that escape with an energy in the
Jjth interval, as well as the squares B%(j), which will be needed for error
estimates.

The quantities B(j), B%(j) are then summed over all trajectories, so that
by calculating N trajectories (numbered s = 1, 2, . . ., N) we will obtain
the approximate spectrum

N
2 BG)),

1
SW) = N

and its probable errors

0.675 12
3Sy() = NN {N > B, - [Szv(l)]z} .

s=1

If the energy grid is logarithmic, as suggested above in stating the
problem, the quantities Sy(j) will be proportional to the intensities /,; if
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the grid is uniform, the Sy(j) will be proportional to the flux Z,/hv. In

either case the normalization is the same:

> S) = 1.
J

Appendix: Expansion of Mean Free Path in Powers of n = kT./mc?

Let A, denote the mean free path of a photon with respect to scattering
[N,o(H)]~ . The last expression for A in Sec. 9.4

by cool electrons: A,

may be rewritten as
2HD'(H) f ey VAT = 1 dy
1

f T e D@L dy
1

ek

Making the change of variables 'y =1+ nz and abbreviating
a = H( + nz), h = H2nz + n?z%)"?, we obtain

20’ (H) fw el + nz)h dz
0

A
Ao f T e D@ + k) — Dla — h)dz

0

The bracketed quantity in the denominator can be expanded in powers of

h:
a+h
da + h — dPa - h = f D' (x)dx
a—h

' h2 " _h__ \"
—2h[d>(a)+ 6<I>(a)+ 120<I>(a)+...

Since the derivatives
®'(a@) = ®'(H) + Hnz ®"(H) + ¥Hnz)* ®"H) + . . .,

®"(a) = P"(H) + Hnz®V(H) + . . .,
DY) = PYH) + . . .,
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it is straightforward to expand the denominator in powers of n. Writing a
similar expansion for the numerator, we can finally put the equation in the
form

Ao L3, 301 — 61 — 6G) — Kln2
7-\0—1+2(1 G)n+8[(1 G)1 6G) — Kln®> + . . .,
where
G = [H®"(H) + H*®"H)]/P'(H),
K = 320H*D"(H) + 10H*®VNH) + H'®V(EN]/ D' (H).

Recall that H = 2hv/mc?, ®'(H) = HO(H).

The foregoing expansion, which holds for any Av, demonstrates that if
n = kT,/mc* is small (in practice, for kT, < 150 keV) the ratio A/ Ao will
depend linearly on n. In particular, for Av <€ mc? we will have

Mg =1 + 5(hv/imcHn + ?(hv/mcz)nz + ...

while in the opposite limit, as hy — o,

Mho=1+8n+82+ ... .
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