Giant Flare of SGR 1806-20 from a Relativistic Jet

Ryo Yamazaki (Osaka University, Japan)

With K. Ioka, F. Takahara, and N. Shibazaki

Soft gamma repeaters (SGRs) are...

- Sources of short (~0.1s),
- repeating bursts of soft γ-rays
 (<100 keV).
 4 (or 5?) are known (3 in our Galaxy, 1 in the LMC).
 The SGRs are quiescent soft X-ray sources (2-10 keV).
 They have rotation periods in the 5-8 s range.
 SGRs are most likely highly magnetized neutron stars

(*magnetars*), that have a magnetic field of ~10¹⁵ G. SGRs emit hard *giant flares*, at a rate of once per ~30 yrs.

Giant flare from SGR 1806-20 (2004, Dec. 27)

Terasawa et al. 2005: GEOTAIL observation

Spectrum of the initial spike

Highly uncertain ...

Initial spike of 1979 March 5 event

Likely nonthermal.

Radio afterglow of 2004 Dec. 27 event

Minimum energy required for observed radio luminosity:

 $E_{\rm min} = 4 \times 10^{43} \ d_{15}^{17/7} [(1+\kappa)F_{100}]^{4/7} f^{3/7} \theta_{50}^{9/7} \ {\rm ergs.}$

Initial outflow was likely ultra-relativistic...

Because luminosity is hyper-Eddington.

 L_{obs}/L_{Edd} 10¹⁰

Especially, when the spectrum is non-thermal, "compactness problem" constraints on the initial Lorentz factor: $\Gamma_0 > 30$.

Nakar et al. 2005

Pure radiation fireball is unlikely (from the radio observation).

Evidence for jetted emission ?

Shock radiates between R and R+ Δ R.

Yamazaki et al., 2005

Jet emission v.s. Isotropic emission

E: Total gamma-ray

 $\begin{array}{ll} \begin{array}{ll} \begin{array}{l} \text{energy} \\ \text{Isotropic} : E \end{array} & 10^{47} \, \text{ergs} \, (\text{Terasawa et al. 2005}) \\ \\ \text{Jet} & : E \end{array} & 10^{44} \, (\Delta \theta \ / \ 0.1)^2 \, \text{ergs} \end{array}$

c.f. Magnetic energy $E_{mag} = (B^2/8\pi) (4\pi R^3/3) = 10^{47} \text{ ergs}$ for B=10¹⁵ G, R=10 km

 \Rightarrow Energetics is rather relaxed for jetted emission case.

Jet emission v.s. Isotropic emission (2)

I want to see a giant flare again from SGR 1806-20 during my life...

Wide spread of Isotropic energy E_{iso}

Radio afterglow light curve

may be fitted by the initially relativistic jet model.

Proper motion of the radio image

may support the jetted emission?

Jet may be one-sided (analogue to the solar flare)

"Statistical" problem

Pulsating tail is nearly isotropic.

When the initial spike is a jetted emission, many orphan pulsating tail should be detected by e.g., BATSE.

But ever detected pulsating tails always associate with the initial spike.

Averaged pulse profile of pulsating tail

Weakly collimated pulsating tail

 $\Delta \theta_{tail}$ 1 rad is possible in magneter model. (but collimation degree highly depends on B-field configuration.)

Thompson & Duncan (1995)

Thompson & Duncan (2001)

Emissions from structured jets ?

Summary

Initial outflow is (likely) relativistic (e.g. $_0>30$).

If so, the light curve of the initial spike of the giant flare of SGR 1806-20 indicate the collimated outflow.

Radio proper motion may support jetted emission?

"Statistical problem" is not serious if less-energetic envelope emission exists.

Prediction: SGR 1806-20 will cause again within this century.