ANALYTICAL STUDIES OF MHD OUTFLOWS

Self-similar solutions

Outflows from stellar bodies

FromSolar WindToStellar winds (OM stars)Compact objects (pulsars, ...)AGNGRB

From 1-D Hydro steady model (Parker 1958)To 3-D MHD relativistic time dep. codes

Collimated flows: Steady and axisymmetric MHD approach

Steadiness and axial symmetry $(\partial/\partial t = \partial/\partial \phi = 0)$

$$[\mathbf{B}, \mathbf{V}] = [\mathbf{B}_p, \mathbf{V}_p] + [B_\phi, V_\phi] \mathbf{e}_\phi$$

• \mathbf{B}_p and $\rho \mathbf{V}_p$ expressed through the functions $\Psi(r, \theta)$ and $A(r, \theta)$ ($\Psi_A = d\Psi/dA$):

$$\mathbf{B}_{p} = \nabla \times \left[\frac{A}{r\sin\theta}\mathbf{e}_{\phi}\right], \quad \rho \mathbf{V}_{p} = \nabla \times \left[\frac{\Psi}{r\sin\theta}\mathbf{e}_{\phi}\right]$$
$$\mathbf{V}_{p} = \frac{\Psi_{A}}{4\pi\rho}\mathbf{B}_{p}, \qquad M^{2} = \frac{V_{p}^{2}}{V_{a,p}^{2}} \equiv \frac{\Psi_{A}^{2}}{4\pi\rho}$$

• B_{ϕ}, V_{ϕ} expressed in integral form:

$$B_{\phi} \propto rac{1 - [\Omega r^2 \sin^2 \theta]/L}{1 - M^2}$$

$$V_{\phi} \propto rac{[\Omega r^2 \sin^2 heta]/L - M^2}{1 - M^2}$$

- $L(A) \propto \underline{total \ angular \ momentum}$ - $\Omega(A) \propto \underline{angular \ velocity \ of \ the \ fieldlines}$ - $r^2 \sin^2 \theta|_{M=1} = L/\Omega$

<u>Bernoulli</u> + <u>Transfield</u> \rightarrow

$$(1 - M^2) \left(a_1 \frac{\partial^2 A}{\partial r^2} + \frac{2a_2}{r} \frac{\partial^2 A}{\partial r \partial \theta} + \frac{a_3}{r^2 \sin^2 \theta} \frac{\partial^2 A}{\partial \theta^2} + a_4 \right) + a_5 = 0$$

where a_i are complicated functions The nature of this Eq. ruled by:

 $D = a_2^2 - a_1 a_3 =$

 $= (V_p^2 - V_f^2)(V_p^2 - V_s^2)(V_p^2 - V_c^2)(V_a^2 + C_s^2)$

- D < 0: *elliptic*, Dirichlet B.C. on a *closed* surface - D > 0: *hyperbolic*, Cauchy B.C. on an *open* surface

• Our Eq. is of *mixed* type: in different regions we can have D > 0 or D < 0

• Singularities for $M^2 = 1$ and $V_p = V_s$, V_f

• Relation between the singularities and the hyperbolic/elliptic regions ?

Singularities and hyperbolic/elliptic regimes

Slope of the characteristics in the hyp. regions

 $r\frac{\mathrm{d}\theta}{\mathrm{d}r} = \frac{1}{a_1}(a_2 \pm \sqrt{D})$

For $a_1 = 0$ one of the characteristics direction becomes parallel to e_{θ} :

Limiting Characteristics or Separatrix

• If the surface of the *L*. *C*. is not \perp to \mathbf{V}_p it *does not* coincide with the positions where D = 0

• The *L.C.* defines the regions *causally connected* inside the outflow

* Classical hydrodynamical problem in 2-D supersonic flows (Landau & Lifshitz 1959)

To construct a correct solution we need to know the L.C., but this would require to know this solution !

Self-similarity

- Separation of the variables: $A(r, \theta) \propto f(r) g(\theta)$
- Scaling of one of the variables with one coordinate

Partial \rightarrow **Ordinary** diff. eqs.:

 $a_1g(heta)rac{\mathrm{d}^2f(r)}{\mathrm{d}r^2}+rac{2a_2}{r}rac{\mathrm{d}f(r)}{\mathrm{d}r}rac{\mathrm{d}g(heta)}{\mathrm{d} heta}$

$$+\frac{a_3}{r^2 \sin^2 \theta} f(r) \frac{d^2 g(\theta)}{d\theta^2} + a_4 + \frac{a_5}{1 - M^2} = 0$$

<u>Radial</u>: $f(r) \propto r^x$, $M(\theta)$ Singularities (L.C.) for $a_3 = 0$, where $V_{\theta} = V_{s,\theta}, V_{f,\theta}$ Magneto - Centrifugal Disk winds

<u>Merid.</u>: $g(\theta) \propto \sin^2 \theta$, M(r)Singularities (L.C.) for $a_1 = 0$, where $V_r = V_{s,r}, V_{f,r}$ Magneto - Thermal winds

Low & Tsinganos '85, Sauty et al. '94,

SELF-SIMILAR JETS

Meridional self-similar models

(Meliani, Sauty, Tsinganos, Trussoni, Vlahakis)

 $M(R) \rightarrow \text{Surfaces of constant } M: \text{ spheres}$ $I_z \propto L \Psi_A \propto \lambda \alpha$ $P(R, \alpha) \propto P_o(R)(1 + \kappa \alpha)$ $\Psi_A^2(\alpha) \propto 1 + \delta \alpha$

From numerical integration we have $\mathcal{F}(R; \lambda, \kappa, \delta,)$

The solutions are suitable to model outflows in the region around the rotational axis

Acceleration: basically thermal

Collimation: thermal or magnetic

The collimation depends on the interplay between the inwards and outwards forces across the streamlines

The thermal or magnetic confinement is ruled by the following parameter

 $\epsilon \propto E_P - E_c + \Delta E_G$

with

 E_P : Variation of the <u>Poynting energy</u> E_c : Variation of the <u>centrifugal energy</u> $\Delta E_G \propto (\kappa - \delta)$: Variation of the <u>gravitational energy</u>

- $\epsilon > 0$ <u>Efficient magnetic rotator</u>: magn. collimation
- $\epsilon < 0$ <u>Inefficient magn. rotator</u>: thermal. coll.

0 < 3

< 0

3

Relativistic Extension

- New parameter: $\mu = r_g/r_\star < 1$
- Non relativistic rotational velocity: $\varpi \ll c/\Omega$
- Mildly relat. velocities
- Electric force $[\rho \mathbf{E} \propto -\rho (\mathbf{V} \times \mathbf{B}) / \mathbf{c}]$: decoll.

Weak collim. in relat. outflows time dependent computations (Tsinganos & Bogovalov, 2002-2005)

Possible Model:

Inner relativistic wind **Outer** classical disk wind

CONCLUSIONS

Through the analysis of MHD steady solutions we can have insights on the physical properties of astrophysical outflows

Further issues:

Non ideal MHD (resistivity) **Radiative effects** (losses and/or acceleration) **Large amplitute e.m. waves**

Time dependent solutions: Asympt. status, instabilities

Asympt. status, instabilities Interaction with the envir. Launch