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Outline
1. Arguments for the IC/CMB Mechanism

• Energy densities: Magnetic Field vs. Cosmic Background Photons

• Broadband Spectral Energy Distribution

• Morphology and the X-ray vs. Radio Profiles

2. Implications of the IC/CMB Scenario
• Gives B,δ, ne

• Direct Observation of Kinetic Flux

• Beacons at Large Redshift

3. Predictions of the IC/CMB Mechanism
• Detectγ-ray Jets

• X-ray Jet flux dominates at Large Redshift



Significance of Distinguishing between IC/CMB vs.
Synchrotron X-ray Emission.

• IC/CMB X-Rays are from low energy electrons,

γ ∼ 20 to 1000. Otherwise observable only below 1 MHz.

• Absence of IC/CMB X-Rays will imply gross deviations

from minimum energy.

B >> Beq

• If local examples (z≈ 1) radiate IC/CMB X-Rays, then

X-ray detections or limits may show us the earliest

Black Hole activity in the universe.



Arguments for the IC/CMB Mechanism

Energy densities:

Magnetic Field vs. Cosmic Background Photons

• Relativistic electrons predominantly lose energy by scattering

on the photon (or virtual photon) population with the largest

energy density.

• If the magnetic field energy density:ground energyB2/(8π)

exceeds the cosmic microwave background energy:aT4
0 Γ2 (1+z)4

then synchrotron will be the predominant radiation.
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Arguments for the IC/CMB Mechanism

Broadband Spectral Energy Distribution

• If a single population of electrons produces X-rays

via synchrotron emission, then the radio flux density

must extrapolate through the optical and connect to the X-ray,

possibly with increasing slope.

• Optical upper limits, or detections, below such

an extrapolation disallow a single synchrotron

emission spectrum.



Spectral Energy Distribution often indicates against
Synchrotron X-rays



Spectral Energy Distribution often indicates against Synchrotron X-rays

Sambruna et al., 2002ApJ...571..206S
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Arguments for the IC/CMB Mechanism

Morphology and the X-ray vs. Radio Profiles

• Lowest energy electrons propagate furthest downstream

• Radio emission downstreamof synchrotron X-ray emission

γx−ray ≈ 107; γradio ≈ 104.5

X-rays decrease rapidly and not well correlated with radio

• Radio emission upstreamof IC/CMB X-ray emission

γx−ray ≈ 103; γradio ≈ 104.5

Radio to X-ray ratio change not as rapid.



Confront IC/CMB with Morphology

Naive Models
(z=1; Γ=10; θ=0.1 radian; B=10µG)
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Morphology Summary

• Roughly constant fx/fr (within ×2).

X-rays end when radio makes sharp bend.

IC/CMB: Strong Beaming Dependence

• X-ray profile decreases, Radio profile increases,

fx/f r changes more than×10.

Multiple Electron-Population Synchrotron Contributions

• Roughly constant fx/fr (within ×2).

X-rays persist beyond radio.

IC/CMB: Longer Lived Low Energy Electrons



IC/CMB Implications for AGN Jets

• Eddington Luminosity might not limit Accretion Rate –

Black Holes may Grow more rapidly than expected.

• We observe sufficient Jet Power to inflate Cavities in

Clusters of Galaxies & Stop Cooling Flows

1061 ergs in 30 Myrs.

• IC/CMB X-ray jets Maintain Constant Surface

Brightness vs. z.

Can detect their X-rays at any Redshift.
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Kinetic Flux

• P jet =Γ2π r 2β c (w-ρ0 c2/Γ)

• w is enthalpy density,

ρ0 the mass density

• For equipartition,

w= B2

6π(2 +χ)

• NOTE: P jet constant⇒
(B Γ)2 = constant
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Kinetic Flux

• P jet =Γ2π r 2β c (w-ρ0 c2/Γ)

• We takeΓ ≈ δ
δ = (Γ(1− β cos(θ)))−1

• cos(θmax) =
√

(δ2 − 1)/δ



Kinetic Flux

P jet ∝ δ2 θ2
r (3 B2/(6 π))



Kinetic Flux

From K = Γ2π r 2β c U,

K ∝ δ2θ2
r (3 B2/(8 π))

Kinetic flux is a significant,

even dominant, portion of

accretion energy budget.



Predictions of the IC/CMB Mechanism

• Must have IC/CMB γ-ray Jets

• X-ray to radio flux ratio of jet must increase with redshift

• X-ray jet to X-ray quasar flux must increase with redshift

• There may be radio quiet jets

• X-ray jet flux density index equal or flatter than radio



Sambruna et al., 2002ApJ...571..206S

Inverse Compton X-
rays from the CMB:

γx ≈102−3

γr ≈104−5

Some kpc scale jets
may be detectable by
GLAST, at 10−13 to
10−12 ergs cm−2 s−1



Correlation of X-ray and Radio Flux Densities
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Correlation of X-ray and Radio Flux Densities



An X-ray Jet at High Redshift
An Einstein and ASCA source

3" = 20kpc

GB 1508+5714

z=4.3

Siemiginowska et al. 2003ApJ...598L..15S
Cheung,2004ApJ...600L..23C



There Could Be Radio Quiet X-Ray Jets!

• 1 keV X-rays produced

by γ ≈ 1000/Γ

• ν = 4.2×10−6γ2 H[µG]

≈ 10 MHz
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• Age≈ 3×104 years?
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Significance of Jet X-ray Emission

1. X-rays dominate power radiated by jet

2. SED through X-ray band provides clues
to structure.

• Particle acceleration sites

• Deceleration of bulk motion

• Proton content



Significance of IC/CMB X-ray Emission

3. X-rays give the effective Doppler factor,
rest frame B, electronγmin, and
kinetic flux Pjet

4. X-ray jets will be easily detected at large
redshift!
May signal the first Massive Black Holes
in the Universe


