Generation of Relativistic Jets

How do they survive pair creation?
Is relativistic reconnection an efficient converter of electro-magnetic into matter energy flow?

by Guy Pelletier. Grenoble. France

Unified view TeV Blazars-FR1

• δ governs 2 contraints:

- ratio beamed/unbeamed luminosities

- fraction of beamed sources

Statistics : unification TeV blazars-FR1. both independent constraints $\Rightarrow \Gamma = 3-5$ (Chiaberge et al. 00)

• Statistical pb even with 2-component relat. Jet: $\Gamma = 15-25$ and $\Gamma_s = 3-5$!

Example: (Saugé & Henri 04)

Proba for detecting a TeV-blazar among a BLLac population at $z \le 0.13$:

6.35 x 10⁻⁶ for Γ = 25 (29 BLLac, 5-7 TeV-blazars)

• HESS TeV observation of M87 => $\Gamma \sim 3$

• R ~ct_{var} => Γ ~ 3

Pair creation in AGN jets (according to Henri & Saugé 04, 05)

Opacity constraints on δ , from observation data only, seen on the low energy part of the synch. spectrum

 $\delta \sim 30$ or 3-5 : a crisis ?

Remedy : (unavoidable package!)
i) Stratified emission

(SSC emission from a different place than synchrotron)

ii) Quasi monoenergetic distribution...

(in situ acceleration, reconnections)
iii) δ = 3-5 —> γγ-opacity important!

Pair creation catastrophe

Weak pair contribution usually expected

• Magnetisation :
$$\sigma \equiv \frac{Poynting flux}{matter energy flux}$$

• Compactness : measures opacity and Compton drag

$$au_{\gamma\gamma} \simeq 0.2 \ell_c \varepsilon^{\alpha} \text{ with } \ell_{\rm c}({\rm r}) \equiv \frac{\sigma_{\rm T} {\rm L}}{4\pi {\rm m_e} {\rm c}^3 {\rm r}} = \frac{{\rm m_p}}{{\rm m_e}} \frac{{\rm L}}{{\rm L_{Ed}}} \frac{{\rm r_g}}{{\rm r}}$$

• Braking length and Baryon load :

If e⁺-e⁻ dominated

$$\frac{\ell_{rel}}{r} = \frac{1+\sigma}{\ell_c} \frac{<\gamma>}{<\gamma^2>}$$

If baryon dominated:

$$\frac{\ell_{rel}}{r} = \frac{m_p}{m_e} \frac{1+\sigma}{\ell_c} \frac{\langle \gamma_p \rangle}{\langle \gamma^2 \rangle}$$

How to get efficient Poynting flux conversion?

• Cold flow with

$$\sigma_0 \gg 1 \to \Gamma \sim \sigma_0^{1/3}$$

• Significant deviation from cold monopolar flow necessary! (Vlahakis)

reconnections

• Warm when passing through the A-critical surface.

$$\sigma_0 \sim 10 \to \Gamma \sim \sigma_0 \sim 10$$

• No problem with external collimation. Powerful non-relativistic jet needed for that.

Dynamical consequence of pair creation

Blazars

Γ = 3-5 => τ_{γγ} significant
pair pressure grows to equipartition

• Pair creation and moderate field would kill the e.m. generation of a relativistic jet

$$\sigma_0 \sim 1 \to \Gamma \sim 1$$

• Strong Compton drag

Other problems: Collimation, Power

• Confinement pb of a relativistic flow

-In non-relativistic flow B_{ϕ} insures self-confinement

-In relativistic flow, $E \ge B_{\phi} \longrightarrow$

no self-confinement ! (S. Bogovalov, K. Tsinganos)

• From a spinning BH : $P_{BZ} \sim 10^{-2} P_{accr}$

• From an accretion disk : $P_j \sim P_{accr}$

But likely non-relativistic (matter outflow)

Interest of a "two-flow" model (Sol, Pelletier, Asséo 89; Henri, Pelletier 91; Marcowith et al. 95, etc.)

• channeling : subrelat. jet confines the relat. jet

• power in the large scale jet (mildly or sub-relativistic) A sizable fraction of accretion power !

(Can even make the accretion flow weakly radiative!)

• powering the relativistic component : reconnections and disturbances in NR-jet heat e⁺-e⁻ R-jet

• Compton pressure gradient (compton rocket): Heated pairs strengthen coupling with radiation field

• Opacity effects. Pair creation catastrophe. Fast variability

Dissipation through particle acceleration: Fermi processes and Reconnections

> • Fermi processes (1st or 2nd order) in non-relativistic or in relativistic regime

• Magnetic reconnections (resistive or collisionless) in non-relativistic or in relativistic regime

Magnetic Reconnection (dissipation of B)

Non-relativistic

Relativistic

- Conversion of magnetic energy flux -> (1/2) Kinetic energy flux (u_{out} = V_A) + (1/2) Heating -> radiation
 slow rate in resistive MHD.
 Much faster in collisionless regime
 QME distribution
- Conversion of electromagn energy flux -> Kinetic energy flux <<
 "Heating" (collisionless) -> radiation
- high rate. Unavoidably collisionless
 QME distribution

The Sweet-Parker model

 δ vanishes with η !

A relativistic version by M. Lyutikov and Uzdensky

Resistivity problem in MHD reconnection

- Reconnection thickness in MHD description
- Outflow and inflow (Sweet-Parker) Matter and energy fluxes vanish with resistivity Slow rate !
- Violation of MHD even with anomalous resistivity!

$$\frac{\delta}{\delta_0} = \sqrt{\frac{m_e}{m_i}} \frac{c}{u_{in}} \frac{\nu_{ei}}{\omega_{pe}}$$

Reconnection mediated by whistler dynamics 2D1/2-reconnection with a baryon load Sheet thickness $\delta \sim \delta_e \ll \delta_*$ (smallest MHD scale) Whistler dynamics at scales $\ll \delta_*$

Break down of "frozen in" at einertial scale δ_e

> $m_e \rightarrow 0$ $m_p \rightarrow \infty$

Collisionless Relativistic Reconnection

Universal laws independent of the small scale dissipation process

(extension to the relativistic case of the approach of J. Drake 2001 + co.)

Modified Relativistic MHD : covariant generalised Ohm's law

$$u_{out} \sim \frac{\delta_*}{\delta} \gamma_A u_A$$
 and $u_{in} \sim \frac{\delta_*}{L} \gamma_A u_A$

Ultrarelativistic Jets, July 05

 $\delta = \delta_e$, $L = 10\delta_e$

Fast reconnection with electron acceleration

G.P. & P.Y. Longaretti 2005

Energetic of relativistic reconnection (with a baryon load)

- Flux of e.m. energy converted mostly in electron energization and thus radiation. Otherwise non-relativistic!
- With a baryon load (whistler dynamics), for B²/4π > 0.2 (e+P), Fully relativistic e.m. influx (by electrons) i.e. cB²/4π in a current sheet of δ = δ_e
- balanced by synchrotron loss -> QME distrib that peaks at

$$\gamma_{max} \sim 2.4 \times 10^7 (\frac{n_0}{1 \, cm^{-3}})^{-1/5}$$

Energetics of relativistic reconnection (for a purely e⁺e⁻-plasma)

- Fully relativistic e.m. influx for $B^2/4\pi > e+P$
- In a current sheet of thickness $\delta = \delta_e(\gamma_0)$ (> $r_L(\gamma_0)$ in relat regime) (break down of "frozen in" at this scale)
- Balanced by synchrotron loss in radiative regime =>
 QME distribution that peaks at the same energy estimate as before!
- In advective regime (midly relat.) $u_A \sim 1$ i.e. equipartition B_{in} with P_{out}
- simple phenomenology: B, n => γ_0 and $\delta = \delta_e(\gamma_0)$
- Advection, diffusion and cooling outside the reconnection site

Prospect

- Progress in 3D-reconnection (when baryon loaded, mediation by whistler dynamics confirmed already).
- Physics of reconnection in pair plasmas (Lyubarsky).
 Relativistic regime => radiative reconnection for strong B OK for magnetar and pulsar winds
- In Blazars advective reconnections only (midly relativistic)
- Getting control of the formation of reconnection sites.
- Relevance of these physics for the interpretation of the spectra of H.E. sources.