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The early afterglow

Observationally

Optical and x-rays: seconds — minutes °
Radio: hours — a day °

Theoretically
A signature of the interaction between the
Jelativistic wind and the circumburst medium

Why is ?this phase important



?Baryonic flow or Poynting flux -

Reverse Forward Forward
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Theprompt emission should carry asignature of the content as
_well. However itschaotic nature prevented the identification. so far



?Baryonic flow or Poynting flux -

Reveals the structure and the -
properties (e.g. initial Lorentz factor)
of the outflow

Distinguish between different °
models of the circumburst medium
(interstellar medium or a wind of a

(massive star



A baryonic ejecta interacting with an ISM
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A baryonic ejecta interacting with an ISM

Introduction -

Optical

Hadio - A signature of a Reverse
F,17_ Shock Emission
1 |

time

A diagnostic of the initial
properties of the ejecta

Internal shocks signature °

Observations -



Reverse Forward

shock shock
:The synchrotron frequency
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The brightness of the optical flash depends
[rs = rs)E,n,A T ( strongly on



The light curve of the reverse shock alone
((without the contribution of the forward shock
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Early afterglows that pass all these tests

U

A Reverse Shock in an ISM
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?How bright is the optical flash

<02 mIR ., =18(E2n'""C
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E — isotropic equivalent energy (10°-10%( erg
(n — External density (0.01-10 cm?

t,(— Time of the peak (10-500 sec

([Mgs-1) — 0.05-5

D, - Luminosity distance

F

Assuming 10% of the internal energy is in the electrons

and 1% is in the magnetic field andv v <v <V



?When is the peak of the optical flash

T — the duration of the prompty -ray burst

Relativistic reverse shock — no delay -
Newtonian reverse shock — delay of the order of
the burst duration

if the burst is short the shell might spread significantly*
between the internal and the reverse shocks t>>T



An irregular hydrodynamic profile

Contains information of the exact profile °

A signature of the internal shocks



Internal shocks + reverse shocks

(temporal features)

The light curve of 5%,»-»*_;3(Optical light curve (t<t,

internal shocks —~ of reverse shock

Hydrodynamic shocks homogenizel and pbut they
do not homogenizen



An example

The 1D relativistic hydrodynamic code was given to us generously
by Shiho Kobayashi & Re’em Sari
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Lorentz factor, density and energy profiles at the beginning of the
reverse shock
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If the prompty-ray emission results from internal
:shocks than

Theprompt optical light curve should be a
smoothed version of they-rays light curve
((maybe, but not necessarily, delayed



Other mechanism that can produce prompt
optical emission

The same mechanism that produces they -rays °
(Meszaros & Rees 97; Vestrand et al. 05) —Expected to
peak, but not necessarily decay with they-rays emission (e.g.
ifv <V <v,)
Pairs enriched forward shock (by interaction of they- °

rays with the circumburst medium; Thompson & Madau 00,
(Meszaros et al. 2001, Beloborodov 2002

The forward shock -

None of these is expected to produce an optical decay of
t2 !!! or a radio flare



Observations

R—band lightcurve of GRB 290123
GRB 990123: VLA 8.46 GHz lightcurve
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Early optical emission (L1t?) :+ radio flare
1 bursts

Early optical emission (LIt?) -:no radio detection
*2 bursts

Early radio flare -:no early optical observations
°2 bursts

Early optical emission that do not decay as t-
°4 bursts

Tight upper limits (R>17mag) on any early (t<100sec)
:optical emission

*6 bursts (all are faint; fluence < 10-° erg/cm?)



Why in some cases there is no bright
2early optical emission

Highly magnetized jete
Newtonian reverse shocke

Very dense external density as expected for a wind of a°
(massive star (V <<v .

Cooling of the reverse shock by IC of the prompty-¢

ray
GeV-TeV flash Beloborodov 2005))



Why in some cases the bright early optical
?emission do not decay as t?

Not a reverse shock (e.g. internal shocks or forward -
(shock

(Energy injection (refreshed shocks -



Conclusions

Optical flash decay + radio flare

:> A distinctive Reverse
Shock signature

Baryonic tlow -
ISM like external density -

The rising phase of the Optical flash

Reveal the ejecta
initial properties
Internal shocks signature °




Current observations at are

not conclusive
of the bursts show some 1/3~
signature of reverse shock

of the bursts do not show any 1/3~
bright prompt optical emission (in all
these cases they-ray emission is faint
(as well



'Thank you



