Drift acceleration of UHECRs in sheared AGN jets

Maxim Lyutikov (UBC) in collaboration with Rashid Ouyed (UofC)

Acceleration of UHECRs: there is more than Fermi

Conventionally – Fermi I & II at relativistic shocks:

- maximal efficiency $(\tau_{acc} \sim \gamma/\omega_B)$ is usually either assumed or put "by hand" by using (super)-Bohm cross-field diffusion
- so far NO self-consistent simulations produced required level of turbulence
- Hardening above the "ankle" ~ 10¹⁸ eV may indicate new acceleration mechanism

We propose new, non-stochastic acceleration mechanism that turns on above the ankle, $E > 10^{18} eV$

General constraints On acceleration cite:

Constraints on UHECRs are so severe, "~" estimates are useful Maximal acceleration E-field < B-field: $E=\beta_0 B$, $\beta_0 \le 1$ Total potential $\Phi = E R = \beta_0 B R$ Maximal energy $E \sim Z e \Phi = \beta_0 Z e B R$ Maximal Larmor radius $r_L \sim \beta_0 R$

- For $\beta_0 < 1$ system can confines particles with energy large than is can accelerate to (NB: Hillas condition $r_L \sim R$ is condition on confinement, not acceleration)

Two possibilities:

 $- E \parallel B \text{ (or } E > B) - DC \text{ field}$

 $- E^{\perp}B$ – inductive E-field

Two paradimes for UHECR acceleration

E D C (linear) acceleration for UHECR do not work

Full DC accelerations schemes (with E-field || to B-field or E>B) cannot work in principle for UHECRs

- 2. leptons will shut off E_{\parallel} by making pairs (typically after $\Delta \Phi \ll 10^{20} \text{ eV}$)
- 3. Double layer is very inefficient way of accelerating: E-field will generate current, current will create B-field, there will be large amount of energy associated with B-field. One can relate potential drop with total energy:

 J_i

 Φ, R

- Relativistic double layer: $R \sim \Phi^{1/4}$
- Maximal energy $\mathsf{E}_{\max} = \sqrt{I m_p c Z e}$
- Total energy: $E \sim B^2 R^3 \sim I^2 R c^2$
- $\mathsf{E}_{\max} = \sqrt{m_p c^2 Ze} \left(\frac{E_{tot}}{R}\right)^{1/4} \le 10^{15} \text{eV} \left(\frac{E_{tot}}{10^{60} erg}\right)^{1/4} \left(\frac{10 kpc}{R}\right)^{1/4}$

Lovelace 76 **E B**: Inductive potentiand ford $E \perp B$: Poynting flux in the system: relate Φ to luminocity $L_{EM} = 4\pi R^2 \frac{E \times B}{4\pi} c = \frac{\sigma}{\sigma + 1} L_{tot} \sim L_{tot}, \text{ for } \sigma \sim 1$ $E \sim \beta_0 B$, $L_{EM} \sim \beta_0 (BR)^2 c$ *Electric potential* $\Phi = ER = \beta_0 BR \implies L \sim \frac{\Phi^2}{\beta_0} c$ $\Phi \leq \sqrt{\frac{4\pi \beta_0 L}{c}}, BR \sim \frac{I}{2\pi c} \implies I \sim \sqrt{\frac{L c}{4\pi}}$ $R \sim \frac{4\pi}{\sim} \sim 377\Omega$, $L_{EM} \sim E$ I

To reach $\Phi=3\ 10^{20}\ eV$, $L>10^{46}\ erg/s$ (for protons) This limits acceleration cites to high power AGNs (FRII, FSRQ, high power BL Lac, and GRBs) There are a few systems with enough potential, the problem is acceleration scheme

Acceleration by large scale inductive E-fields: E~∫ v•E ds

Potential difference is between different flux surface (poleequator)

In MHD plasma is moving along V=ExB/B² – cannot cross field lines

What is the mechanism of acceleration? Before, it was only noted that there is large potential (Lovelace, Blandford, Blasi), but no mechanism (Bell)

Kinetic motion across B-fieldsparticle drift

Potential energy of a charge in a sheared flow

 $= \frac{4\pi}{C} B \bullet (\nabla \times v) \text{ For linear velocity profile} v = \eta x : \Phi = \frac{4\pi}{C} B \eta \frac{x^2}{2}$

R

Potential $\Phi \sim -x^2$

Depending on sign of (scalar) quantity (B *curl v) one sign of charge is at potential maximum

Protons are at maximum for negative shear (**B** *curl v) < 0 **This derivation is outside of applicability of non-relativisitc MHD**

Potential $\Phi \sim x^2$

B

Astrophysical location: AGN jets

There are large scale B-fields in AGN jets

Jet launching and collimation (Blandford-Znajek, Lovelace, Blandford-Payne; Hawley)

Observational evidence in favor of helical fields in pc-scale jets (talk by Gabuzda ,posters, Lyutikov et al 2004,)

Jets may collimate to cylindrical surfaces (Heyvaerts & Norman)

At largest scales Bø is dominant

Jets are sheared (talk by Laing)

Drift due to sheared Alfven wave

Electric field $E \sim vz \times B\varphi \sim er$

For negative shear, (B *curl v) < 0, proton is at potential maximum, but it cannot move freely along it: need kinetic drift along radial direction

Inertial Alfven wave propagating along jet axis $\omega = V_A k_z$ $B\varphi(z) \rightarrow U_d \sim \nabla B\varphi x B\varphi - er$

Why this is all can be relevant? Very fast energy gain : Energy gain: $\langle \partial_{t} \mathbf{E} \rangle = eZ \langle (\mathbf{E} \bullet \mathbf{v}) \rangle = eZEu_{d}$ For linear velocity profile, $V=\eta x$, $E=\eta x B/c$, x = udt, $u_{d} = \frac{k_{A} \mathsf{E}}{2ZeB} c \longrightarrow \partial_{t} \mathsf{E} = \frac{\eta \mathsf{E}^{2} k_{A}^{2} t}{4ZeB}$ $\tau_{acc} \sim \frac{1}{\sqrt{\gamma}} \frac{1}{|k_A|c} \sqrt{\frac{\omega_B}{\eta}} = \frac{1}{|k_A|c} \sqrt{\frac{ZeBc}{E\eta}}$

highest energy particles are accelerated most efficiently!!! low Z particles are accelerated most efficiently!!! (highest rigidity are accelerated most efficiently)

Jet needs to be ~ cylindrically collimated; for spherical expansion adiabatic losses dominate

Wave surfing can help

Shear Alfven waves have $\delta E \sim (V_A/c) \delta B$, particle also gains energy in δE Axial drift in δExB helps to keep particle in phase

Most of the energy gain is in sheared E-field (not E-field of the wave, c.f. wave surfing)

Final orbits (strong shear), r_L ~ R_j

When r_L becomes ~ jet radius, drift approximation is no longer valid New acceleration mechanism Larmor radius of the order of the shear scale, $\eta = V' \sim \omega_B / \gamma$ (Ganguli 85) Non-relativistic, linear shear: $Vy = \eta x$

$$x = r_L \cos\left(\omega_B \sqrt{1 + \frac{\eta}{\omega_B}} t\right) \quad y = \frac{r_L}{\sqrt{1 + \eta} / \omega_B} \sin\left(\omega_B \sqrt{1 + \frac{\eta}{\omega_B}} t\right) \quad V \qquad \eta = -1.01$$

$$unstable \ motion \ for \ \eta < - \omega_B$$

$$B$$

Final orbits: relativistic

$$\frac{\eta_{crit}}{\omega_B / \gamma_0} = \gamma_0 \left(-\gamma_0 + \sqrt{\gamma_0^2 - 1} \right) \approx -\frac{1}{2} \qquad \eta = V'$$

For $\eta < \eta_{crit} < 0$ particle motion is unstable When shear scale is $\frac{1}{2}$ of Larmor radius motion is unstable Acceleration DOES reach theoretical maximum Note: becoming unconfined is GOOD for acceleration

Rela

Spectrum

From injection $dn/d\gamma \sim \gamma^{-p} \rightarrow dn/d\gamma \sim \gamma^{-2}$

Particles below the ankle do not gain enough energy to get rL ~Rj and do not leave the jet

Mixed composition

protons

This is what is seen

Radiative losses

Equate energy gain in E = B to radiative loss ~ $U_B \gamma^2$

As long as expansion is relativistic, total potential remains nearly constant, one can wait yrs – Myrs to accelerate

Astrophysical viability

Need powerful AGN FR I/II (weak FR I, starbursts are excluded) – UHECRs (if protons) are not accelerated by Cen A or M87 Several powerful AGN within 100 Mpc, far way \rightarrow clear GZK cut-off should be observed

For far-away sources hard acceleration spectrum, p~ 2, is needed Only every other AGN accelerates UHECRs

Clustering is expected but IGM B-field is not well known

- μGauss field of 1Mpc creates extra image of a source (Sigl)

Isotropy & clustering: need ~ 10 sources (Blasi & Di Marco)

Fluxes: $L_{UHECR} \sim 10^{43} \text{ erg/sec/(100 Mpc)}^3 - 1 \text{ AGN is enough}$

Pre-acceleration can be done outside of the jet and pulled-in Shock acceleration in galaxy cluster shock stops @ 10¹⁸ eV Matching fluxes of GCR and EGCR....

Main properties of the mechanism:

Protons are at maximum for negative shear (B * curl v) < 0

Acceleration rate *increases* with energy

At highest energies acceleration rate **does** reach absolute theoretical maximum $\tau_{acc} \sim \gamma/\omega_B$

At a given energy, particles with Smallest Z (smallest rigidity) are accelerated most efficiently (UHECRs above the ankle are protons) produces flat spectrum

Pierre Auger: powerful AGNs?

- GZK cut-off
- few sources

May see v & y fluxes toward source (HESS, IceCube)

GRBs: L ~ 10⁵⁰ erg/s

GRBs: $I \sim 10^{20} A$, $E_{max} = 3 \ 10^{22} \ eV$

Max. acceleration $E \sim B$ (on $\tau \sim \gamma/\omega_B$), shorter than expansion time scale c Γ/R

Radiative losses (e.g. synchrotron). For E_{CR}~ 3 10²⁰ eV

$$r > \frac{Z^{2}e^{2}}{mc^{2}} \left(\frac{E}{mc^{2}}\right)^{3} \Gamma^{2} \sim 310^{14} \Gamma_{100}^{-2} \text{ cm}$$
$$B < \frac{m^{2}c^{4}}{Z^{3}e^{3}} \left(\frac{E}{mc^{2}}\right)^{2} \Gamma^{3} \sim 310^{5} \Gamma_{100}^{-3} \text{ G}$$

Always fighting adiabatic losses: need to get all the available potential on less than expansion time scale If there is GZK cut-off, and $L_{GRB} \sim L_{CR}$ then GRBs are viable source

E B : Inductive potential

	Voltage	Current
Sun	10 ⁸ V	10º A
Pulsar	1016 V	3 10 ¹² A
SGR	3 10 ¹⁴ V	10 ¹² A
AGN	3 10 ²⁰ V	10 ¹⁸ A
GRB	3 10 ²² V	10 ²⁰ A
SLAC	10 ¹⁰ V	1 A

Potential energy of a charge in a sheared flow

Consider sheared fluid motion of plasma in ma

$$E = -\frac{v}{c} \times B \Longrightarrow \Delta \quad = \frac{4\pi}{c} \nabla(v \times B) =$$

$$\frac{4\pi}{c} \left(B \bullet (\nabla \times v) - v \bullet (\nabla \times B) \right)$$

in stationary, current-free case $\Delta = \frac{4\pi}{B} \bullet (\nabla \times \nu)$

Depending on sign of (scalar) quantity (B *curl v) one sign of charge is at potential maximum

Protons are at maximum for negative shear (B *curl v) < 0 This derivation is outside of applicability of non-relativisitc MHD

For linear velocity profile, $v = \eta x$: $\Phi = \frac{4\pi}{c} B_z \eta \frac{x^2}{2}$

Positive shear Laboratory frame **v(r)** Jet axis $v(r_0)$ $\mathbf{E}(\mathbf{r}_{0})$ **E(r)** ₿_¢ Flow frame at $r=r_0$

ow frame at $r=r_0$ $v_r(r)-v_r(r_0)$ $E(r)-E(r_0)$

Proton is at potential minimum

