The Giant Flare From SGR 1806-20 and Its Aftermath

Bryan Gaensler

Harvard-Smithsonian Center for Astrophysics

 Yosi Gelfand, Greg Taylor, Chryssa Kouveliotou, David Eichler, Yoni Granot, Enrico Ramirez-Ruiz,
 Yuri Lyubarsky, Ralph Wijers, Dick Hunstead, Duncan Campbell-Wilson, Alex van der Horst, Maura McLaughlin, Rob Fender, Mike Garrett, Katherine Newton-McGee, David Palmer, Neil Gehrels, Pete Woods

Magnetars

Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs)

- occasional X-ray/γ-ray bursts
- very rare giant γ -ray flares
- slow X-ray periods ($P \sim 5-12$ sec)
- rapid spin-down, sudden changes in torque
- low Galactic latitude, some in SNRs
- not seen in radio, no companions

-young neutron stars, but not ordinary pulsars, not accreting binaries

⇒ "magnetars", isolated neutron stars with $B_{surface} \sim 10^{14} - 10^{15}$ G (Duncan & Thompson 1992; Kouveliotou et al 1998)

• Rare objects: only ~12 magnetars known

- active lifetimes ~10 kyr
- ~10% of neutron star population?

Robert S. Mallozzi, UAH / NASA MSFC

E. L. Wright (UCLA), COBE Project, Courtesy MSFC, NASA

Magnetar Giant Flares

- 5 Mar 1979 from SGR 0526-66 in the LMC
 - 0.2 sec spike of γ -rays, L ~ 5 x 10⁴⁴ erg/s
 - fading 3-min tail with 8.1 sec pulsations

• 27 Aug 1998 from SGR 1900+14

- 1 sec spike of γ -rays, L ~ 2 x 10⁴³ erg/s
- fading 6-min tail with 5.2 sec pulsations
- Intense internal magnetic field, $B \sim 10^{16} G$
- Twists in internal field strain crust
- Produces sudden propagating fracture
 - catastrophic rearrangement of external magnetic field
 - enormous sudden energy release in ultrarelativistic outflow
 - trapped fireball produces fading tail at star's rotation period

Hurley et al. (1998) NASA

Aftermath of 27 Aug 1998

- Radio "afterglow" seen from SGR 1900+14 following giant flare (Frail et al. 1999)
 - faint (peak < 1 mJy after ~7 days)
 - unresolved
 - non-thermal $(S \propto v^{-0.75})$
 - rapid decay $(S \propto t^{-2.6})$
 - undetectable after 3 weeks
 - $E_{equipartition} \sim 7 \ x \ 10^{37} \ ergs$
- Interpretation:
 - injection of relativistic particles by giant flare
 - "mini Crab nebula"
 - quickly expands and fades

Frail et al. (1999) / NRAC

The 2004 Giant Flare

- 27 Dec 2004 from SGR 1806-20 (Borkowski et al. 2004)
- 0.2 sec spike of γ-rays
 - $L_{peak} \sim 2 \text{ x } 10^{47} \text{ erg/s} \sim 1000 \text{ x } L_{MW}$
 - $E_{bol} \sim 4 \times 10^{46} \text{ erg/s} \sim 300 \text{ kyr x L}$
 - fluence at Earth $\sim 1 \text{ erg cm}^{-2}$
 - saturated all but particle detectors
 - created detectable disturbance in ionosphere (Campbell et al. 2005)
 - echo detected off Moon (Mazets et al. 2005)
- Fading 6-min tail with 7.6 sec pulsations (= known rotation period of star), similar intensity to tails in previous two giant flares
- Strength of spike reflects degree of reconnection; strength of tail indicates ability to trap particles

Time (s)

The Spike

• Three characteristic time scales

Palmer et al. (2005)

- leading edge of flare: 1 ms
 rise to main peak: 5 ms
 duration of spike: 0.2 s
- Possible interpretation (Palmer et al 2005; Schwartz et al 2005)
 - 1) 1 ms = timescale for propagation & reconnection in magnetosphere
 - 2) 5 ms = propagation time of 5-km fracture in crust
 - 3) 0.2 s = Alfven crossing time of interior

The Tail

- Quasi-periodic oscillations at 18, 30.4, 92.5 Hz (Israel et al. 2005)
 - possibly represent seismic modes on neutron star surface, coupled to magnetosphere (30, 92 Hz) and to 7 x 10¹⁵ G interior field (18 Hz)
- Unpulsed component of tail good fit to trapped fireball model (Hurley et al. 2005)

Israel et al. (2005)

Hurley et al. (2005)

Timing Behaviour

• No change in spin or spin-down associated with flare!

The Radio Nebula

• VLA observed SGR 1806-20 in "A" array on day 7 (Gaensler et al. 2005; Cameron et al. 2005)

- 0.17 Jy at 1.4 GHz! (recall 0.5 mJy for SGR 1900+14 in 1998)
- already optically thin at first epoch $-n_0 < 0.1 \text{ cm}^{-3}$
- multi-wavelength / multi-telescope campaign activated
- chromatic decay until day 9, then break to $S \propto t^{-2.7} v^{-0.75}$
- rebrightening from days 25 to 35
- $S \propto t^{-1.1}$ from day 35 onwards
- potentially observable until 2020!

Gelfand et al. (2005)

Source Structure

• Source is resolved and elongated : (Gaensler et al. 2005)

- 79 mas x 41 mas at PA -58° on day 7
- implies two-sided expansion of 0.49c x 0.26c at distance of 15 kpc
- ~2% linearly polarized; B vectors at -60° after Faraday correction

Source Expansion & Motion

Expanded steadily at β=0.4 (2-sided) for 30 days, maintaining axial ratio and position angle
confirmed by VLBI observations

- Centroid moving at β =0.26 along elongation direction
- Decelerated to $\beta < 0.2$ around time light curve rebrightened

Gelfand et al. (2005)

Basic Interpretation

- γ-ray spike is not beamed (?)
- Equipartition : $E_{nebula} \approx 10^{44} \text{ ergs} \ll E_{\gamma}$
- Rapid decay from day 9-20, $S \propto t^{-2.7}$
- Mildly relativistic expansion

unlike GRB afterglows (Cameron et al. 2005; Gaensler et al. 2005)

- After annihilation, $E_{pairs} \ll E_{nebula}$
- Prolonged coasting phase indicates ejecta have inertia
- >10⁴⁶ ergs released in & around crust will unbind outer layers of NS at $V_{escape} \sim 0.5c$
 - ⇒ baryonic ejection of material shocks surroundings, & powers radio nebula (Gaensler et al. 2005; Granot et al. 2005)
- Rapid decay: collision with pre-existing shell, which then emits & expands
- Rebrightening & deceleration: Sedov phase; swept-up ambient gas now dominates

$$\Rightarrow M_{ejected} > 3 \times 10^{24} \text{ g} = 10^{-9} M_{NS}$$
$$\Rightarrow E_{kinetic} > 3 \times 10^{44} \text{ ergs}$$

Gelfand et al. (2005)

Further Considerations

• Pre-existing shell

- bow shock? (Gaensler et al. 2005)
- shock driven by flare? (Granot et al. 2005)
- data at t < 7 days are needed! (Fan et al. 2005)
- Motion of centroid implies outflow was anisotropic (Taylor et al. 2005; Granot et al. 2005)
 - hemispherical outflow? wide jet?
 - for outer edge of source expanding at β ,

 $\Gamma\beta = \beta_{\text{apparent}} \approx 1.0 \quad \rightarrow\beta \approx 0.7$

 $\rightarrow M_{ejected} > 9 \times 10^{24} \text{ g}$, $E_{kinetic} > 7 \times 10^{44} \text{ ergs}$

- Compactness (Gelfand et al. 2005; Granot et al. 2005)
 - patchy ejecta, or concentric structures
 - low baryon content along line of sight
- Late time features in light curve
 continued activity from SGR 1806-20?

Granot et al. (2005

Future Work, Questions, Conclusions

- Best observation had $\theta_{nebula} \approx 0.5 \times \theta_{VLA}$
 - "A" array in 2006 will give $\theta_{nebula} > 3 \ge 0$ VLA
 - X-ray nebula with Chandra
- MHD simulations now underway
- No gravity waves seen, but neutrinos, cosmic rays potentially detectable (Baggio et al. 2005; Eichler 2005)
- How often do magnetars flare? Light echoes from previous flares?
- Initial spike could be detected with Swift out to 70 Mpc, tail to 10 Mpc
- 1% 20% of short GRBs are extragalactic magnetars?
 (Hurley et al. 2005; Palmer et al. 2005; Nakar et al. 2005; Lazzati et al. 2005)
- Unique probe of mildly relativistic outflows, magnetic energy release, and neutron star interiors

