Magnetic fields and particle content in FRII radio sources

Judith Croston

CEA Saclay, Service d'Astrophysique, France

URJA2005, Banff, 12th July 2005

In collaboration with:

- Martin Hardcastle (Hertfordshire)
- Mark Birkinshaw, Diana Worrall and Elena Belsole (Bristol)
- Dan Harris (CfA)

Outline

- Introduction:
 - -B fields and particle content of radio galaxies
 - X-ray IC as a probe of physical conditions
- Chandra archive survey
- Spatially resolved X-ray structure in Pictor A
- Conclusions: implications for jets and environmental impact

Magnetic fields and particle content

- Since *B* can't be measured directly from radio emission, equipartition usually assumed.
- Particle content of jets:
 - Electron-positron?
 - Electron-proton?
- Entrained thermal material?
 - Probably dynamically important in FRIs (e.g. Croston et al. 2003)
 - Likely to be energetically unimportant in FRIIs based on limits from Faraday rotation and lack of spectral signatures (e.g. Celotti et al. 1998)

Hints about jet particle content: electron-proton jets?

- Annihilation of e± pairs near the nucleus means that e ± model only compatible with nuclear X-ray emission if γ_{min} ~ 100 (Ghisellini et al. 1992)
- Conservation of kinetic energy and number flux from pc to kpc scales favours e-p jets (Celotti & Fabian 1993)
- Talk by Ghisellini yesterday
- But, several arguments in favour of e± jets...

In favour of electron-positron jets

- Required energy budget for acceleration is lower
- Lack of Faraday depolarisation in parsec-scale jets => either high γ_{min} or e± (Wardle 1977, Jones & Odell 1977)
- Circular polarisation => $\log \gamma_{\min}$ (e.g. Wardle et al. 1998; Homan 2005) if Faraday conversion (but see also Ruzskowski & Begelman 2002)
- Energetics of hotspots combined analysis of shock conditions and IC emission (Kino & Takahara 2004) also supports e±
- Hotspots in the most powerful RGs close to equipartition with no protons...

X-ray IC emission from radio lobes

- Inverse Compton process allows direct measurement of electron density => can calculate *B* from radio & test equipartition assumption.
- Equipartition with $\kappa = 0$ would suggest no rel^c protons
- Incident photon populations are CMB ($\nu \sim 10^{11}$ Hz) and nuclear IR/optical ($\nu \sim 10^{14}$ Hz) emission.
- $\nu_{out} \sim \gamma^2 \nu_{in} =>$
 - To scatter CMB to X-ray, need $\gamma \sim 1000$
 - To scatter nuclear IR/optical to X-ray, need $\gamma \sim 30 100$
- Detected in a number of sources...

Detections of lobe X-ray emission

Croston et al. 2004, MNRAS 353 879; Hardcastle & Croston, submitted

A survey of X-ray lobe emission

<u>Aim:</u> to constrain properties of entire FRII population

- All 3C radio galaxies for which public Chandra data existed at January 2004 + 4 XMM-observed sources.
- Exclude FRIs, sources in rich clusters, sources too small to separate AGN and lobe emission.
- Final sample:
 - 33 FRII radio galaxies and quasars
 - -54 lobes

11 new detections

IC analysis

- Model electron population using radio spectrum:
 - 1.4 GHz maps with regions
 matched to X-ray extraction regions
 - 3C flux densities at 178 MHz
- Low-energy assumptions:
 - $\delta = 2$ (prediction from shock acceleration)
 - $-\gamma_{min}=10$
 - Spectral break $\Delta \delta = 1$
- Determine predicted X-ray IC/CMB emission at 1 keV for $B = B_{eq}$
- Define $R = S_{obs} / S_{pred}$

Assumptions about low-energy electrons

- Cut-off frequency, $\gamma_{\min} = 10$
 - In hotspots, $\gamma_{min} \sim 100 1000$ required (e.g. Carilli et al. 1991)
 - Adiabatic expansion => lower energy electrons in lobes
- Spectral index, $\alpha_{low} = 0.5$ (flattening)
 - Shock acceleration models predict $\delta = 2 2.3$ (corresponding to $\alpha = 0.5 - 0.7$)
 - Also supported by hotspot observations (Carilli et al. 1991, Meisenheimer et al. 1997)
- Spectral break
 - fit curvature of spectrum, caused by ageing => one-zone model is a poor approximation!

Distribution of R (S_{obs}/S_{pred})

Detections

Non-detections

Statistical properties of the sample

- No correlations between *B* and:
 - Radio luminosity (cf. hotspots => synch comp.)
 - Angular size
 - Physical size
 - Redshift
- BUT, possible difference between RGs and quasars...

Narrow-line vs. broad-line objects

- Narrow-line radio galaxies: $\theta > 45^{\circ}$
- Broad-line radio galaxies & quasars:
 - $\theta < 45^{\circ}$
- Unlikely there is problem for unification:
- **Projection:** volume systematically underestimated with increasing angle.
- BLRGs & quasars more distant: **worse systematics** in X-ray analysis, e.g. separation of lobe & AGN emission.

Results

see Croston et al. 2005 (ApJ 626, 733)

- X-ray detection of at least one lobe for 70% of sources.
- Consistent with IC/CMB with B = (0.3 1.3) B_{eq}
- Peak in *B* distribution at $B \sim 0.7 B_{eq}$
- >75% of sources at equipartition or slightly electron dominated
- Magnetic domination must occur rarely, if at all.

Particle content and energetics

- If $B \sim B_{eq}$, then energetically dominant proton population unlikely - would require a mechanism to achieve $U_B \sim U_E$, rather than $U_B \sim U_{E+P}$.
- Total internal energy in FRII radio sources typically within a factor of 2 of minimum energy.
- Where environments have been measured, internal $P_{eq} \sim P_{ext} \Rightarrow$ pressure balance (e.g. Hardcastle et al. 2002, Croston et al. 2004, Belsole et al. 2004)

What about IC/nuclear emission?

- Brunetti et al. (1997) argue that scattering of nuclear IR/optical photons is also important.
- Claimed detections in several sources (e.g. Brunetti et al. 2002, Bondi et al. 2004)
- For our assumptions about low-energy electrons, we find predicted S_{nuclear} << S_{cmb}.
- But, this prediction depends even more strongly on the assumptions about low-energy electrons ($\gamma \sim 30$ 100 dominates here)...

Dependence on low-energy electron parameters

- For $\alpha_{low} = \alpha_{obs}$:
 - R values increase by a factor of ~ 2
 - increase in U_{tot} of up to factor of 20
 - But prediction for IC/nuclear becomes significant => \underline{B} and \underline{U}_{tot} uncertain
- For $\gamma_{\min} = 1000$ (instead of 10):
 - R values unchanged
 - IC/nuclear contribution decreases
 - Conclusions not affected
- For $\alpha_{low} >> \alpha_{obs}$: – all bets are off!

A more in-depth look: Pic A

- 8th brightest radio source in the sky at low frequencies.
- z=0.035
- Little thermal X-ray emission to complicate analysis.
- 3 archive Chandra observations & one archive XMM observations.

Hardcastle & Croston 2005, MNRAS, sub.

Spatial structure

- X-ray/radio ratio higher by up to factor 3 close to the nucleus relative to lobe centre.
- X-ray/radio ratio higher at edges of lobes.
- NB. Radio spectrum steeper in inner regions.

Possible interpretations

- 1. Additional emission process in the inner regions
- 2. Variations in B/B_{eq} , so that inner lobes are more electron-dominated.
- 3. Radio measurements underestimate lowenergy electrons in centre compared to outer regions

1. Additional emission process

- Thermal emission?
 - Can be ruled out based on spectral analysis of inner and outer regions
- Nuclear IC?
 - Requires nuclear luminosity $> 10^{40}$ W
 - Expect counterjet side to have ~7 times more nuclear emission
 - In fact, jet-side lobe has larger high X/radio ratio

2. Variations in B/B_{eq}

- Modest changes of factor ~ 1.5 needed
- *B* closer to equipartition nearest hotspots, falling to lower values in distant (older?) part of lobes
- Low-energy electron population is the same throughout lobes => explains relatively uniform X-ray IC surface brightness.
- Cannot explain the correlation between high X/radio ratio & steep radio spectrum (would require larger variation in *B*).

3. Variation in electron spectrum

- Changes in low-frequency spectral index should only produce at most factor ~2 variation in X-ray/radio ratio.
- Assumes single spectral index and *B* along line-of-sight => more detailed source model may help.
- <u>Conclusion:</u> variations in both *B* field and the low-energy electron population are required.

Summary

- X-ray IC emission from radio lobes allows us to measure n_e and *B* directly and investigate particle content.
- First survey of FRII population as a whole shows:
 - More than 70% of sources are detected
 - $-B = (0.3 1.3) B_{eq}$
 - U_{tot} typically within a factor of 2 of U_{min}
 - No energetically dominant proton population
- In-depth look at Pic A reveals a more complicated situation:
 - Variations in both magnetic field strength and low-energy electron population are likely to be important

Implications for jet physics and environmental impact

- Jets:
 - Energetically dominant relativistic protons unlikely
 - Combined with earlier evidence against cold protons and hotspot results
 - => strong argument that FRII jets are e±
- Environmental impact:
 - Justification for modelling FRII dynamics and evolution using equipartition assumption
 - FRIIs not supersonically expanding?

 Total energy budget available for transfer to cluster environment constrained close to minimum value