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Cosmic Acceleration Mechanisms

• Conventional cosmic acceleration mechanisms encounter limitations:

    - Fermi acceleration (1949) (= stochastic accel. bouncing off B-fields)

    - Diffusive shock acceleration (1970’s) (a variant of Fermi mechanism)

      Limitations for UHE: field strength, diffusive scattering inelastic

    - Eddington acceleration (= acceleration by photon pressure)

      Limitation: acceleration diminishes as 1/γ

• Examples of new ideas: 

   - Zevatron (= unipolar induction acceleration)   (R. Blandford, 

      astro-ph/9906026, June 1999)    

   - Alfven-wave induced wakefield acceleration in relativistic plasma

     (Chen, Tajima, Takahashi, Phys. Rev. Lett. 89 , 161101 (2002). 

   - Additional ideas by M. Barring, R. Rosner, etc.        

Addressing the Bottom–Up Scenario for Acceleration of Ordinary Particles:



WHAT MAKES AN IDEAL ACCELERATOR?WHAT MAKES AN IDEAL ACCELERATOR?     

LESSONS FROM TERRISTRIAL ACCELERATORS 

• Continuous interaction between the particle and 
the accelerating longitudinal EM field (Lorentz inv.)  
         

         Gain energy in macroscopic distance

• Particle-field interaction process non-collisional 

        Avoid energy loss through inelastic scatterings

• To reach ultra high energy, linear acceleration 
(minimum bending) is the way to go 

         Avoid severe energy loss through synchrotron 
radiation       

Are these criteria applicable to celestial accelerators?
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 A Brief History of Plasma WakefieldsA Brief History of Plasma Wakefields

Motivated by the challenge of high energy physics

• Laser driven plasma acceleration            
   T. Tajima and J. M. Dawson (1979)
• Particle-beam driven plasma wakefield acceleration
   PC, Dawson et al. (1984) 
• Extremely efficient:                  
                           eE ≥ √ n [cm-3]  eV/cm
   For n=1018 cm-3, eE=100 GeV/m → TeV collider in 10 m!
* Plasma wakefield acceleration principle experimentally 

verified. Actively studied worldwide



❏ Laser Wake Field Accelerator(LWFA)
      A single short-pulse of photons

❏ Self Modulated Laser Wake Field 
Accelerator(SMLWFA)

      Raman forward scattering instability

❏ Plasma Beat Wave Accelerator(PBWA)

      Two-frequencies, i.e., a train of pulses 

Concepts For Plasma-Based AcceleratorsConcepts For Plasma-Based Accelerators

❏ Plasma Wake Field Accelerator(PWFA)
      A high energy electron (or positron) bunch

evolves to





Plasma Wakefield Simulation
     (SLAC E-157 Collaboration)





Generation of Ponderomotive Force in 
Plasmas

• Ponderomotive force induced by the interaction 
of a localized EM energy density in a plasma is  

               F(r,t) = – ∫ dk/(2π)3 Heff     f(k,r,t) ,

    where f(k,r,t) is the distribution function of the 
quasi-particles that represent the EM energy 
density. 

• Heff = ħω and ω satisfies the dispersion relation 

      ω2–c2k2 = ωpe
2/(1+ Ωe

2/ω2)+ ωpi
2/(1+ Ωi

2/ω2) ,

   where ωpe,pi
2 = 4πe2n/me,i and Ωe,i = eB/me,ic .



For non-relativistic 
plasmas, Alfven waves 
are typically slow: 
EA/BA = vA/c << 1.

In an ultra relativistic 
plasma flow, 
EA/BA = vA/c ≤ 1.
Indistinguishable 
from subluminous 
EM waves



Alfven Wave Induced Ponderomotive ForceAlfven Wave Induced Ponderomotive Force

• The distribution function is related to the Alfven 
wave/shock energy density of the propagating 
“driver” is 

   f(k,r,t)=(EA
2+BA

2)/(8πħωA)=(vA
2+1)BA

2/(8πħωA).

• Inserting into the formula, we find
    F(r,t) = – (1/16π)[(ωpe

2 /Ωe
2)/(1+ Ωe

2/ω2)  

                                 +(ωpi
2/Ωi

2)/(1+Ωi
2/ω2)]        

                   ∙   ∫ dk/(2π)3 (c2k2/ωωA)(EA
2+BA

2) .

 
  

Ponderomotive force depends on the 
gradient of the Alfven shock intensity.
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Equations for electron density perturbation driven by electron beam, 
photon beam, neutrino beam, and Alfven shocks are similar:

where δne is the 
perturbed electron plasma 

density

Plasma Waves Driven by Different Sources

Bingham, Dawson, Bethe (1993): Application to NS explosion  
Alfven Shocks ( ) ( )
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All these processes can in principle occur in astro jets.



Plasma Wakefield PotentialPlasma Wakefield Potential

• In the nonlinear regime, the maximum field amplitude 
that the plasma can support is

    Ewb is the cold wave breaking limit in the linear regime.

    a0 = eEA/mcωA for Alfven shocks. 

• For relativistic plasma flow with Lorentz factor Γp , the 
maximum “acceleration gradient” mcexperienced by a 
single charge riding on the this PWF is 

Emax ≈ a0 Ewb = a0 (mcωp/e).

G = e Emax / Γp
1/2 ≈ a0mc2 (4πre n/ Γp )1/2 .



CONNECTION TO ULTRA RELATIVISTIC CONNECTION TO ULTRA RELATIVISTIC 
JETSJETS

• Assume GRB is the site of acceleration, with energy
    release ~ 1050 erg/sec. Assume 10-4 goes into Alfven 

shocks. Then the Alfven shock amplitude is BA ~ 1010
 G 

at R ~ 109 cm.
• Assume that at R ~ 109 cm, the relativistic jet has a 

density n ~ 1020 cm-3 and balk flow of Γ ~ 102. 
• Taking these and ωA ~ 104 sec-1 as references, we find 

the acceleration gradient
       G = 1015 [(eBA/mcωA )/109][102/Γ ]1/2 [109/R]1/2 eV/cm.

• For the sake of discussion, let’s take all [...] to be 1. Then
    we obtain ε = 1020 eV in a distance L ~ 105 cm !! 



ENERGY SPECTRUM
• Stochastic encounters of accelerating and decelerating 

phase of plasma wakefields results in energy distribution that 
follows the Fokker-Planck equation:

  ∂f/∂t = ∂/∂ε∫d(∆ε)∆εW(ε,∆ε)f(ε,t)+∂2/∂ε2∫d(∆ε)(∆ε2/2)W(ε,∆ε)f(ε,t) 
                      

• Assumptions on the transition rate W(ε,∆ε) in plasma 
wakefield:

    a. W(ε,∆ε) is an even function of ∆ε

    b. W(ε,∆ε) is independent of                        W(ε,∆ε)= const. 

    c. W(ε,∆ε) is independent of ∆ε



ENERGY SPECTRUM

• Steady state (∂f/∂t = 0) solution:  

   

 

 * Power-law spectrum results from random encounters of 
accelerating-decelerating phases; Particle momentum 
direction unchanged.

• When “phase slippage” and other dissipative energy loss 
mechanisms are included, the power-law may be 
modified:

f(ε) = ε0/ ε2

f(ε) = ε0/ ε2+α



Alfven Wave Induced Wake Field 
Simulations

Simulation parameters for plots: 
• e+ e- plasma (mi=me)
• Zero temperature (Ti=Te=0)
• Ωce/ωpe = 1 (normalized magnetic
      field in the x-direction) 
• Normalized electron skin depth 
      c/ωpe is 15 cells long

• Total system length is 273 c/ωpe 

• dt=0.1 ωpe 
-1 and total simulation 

      time is 300 ωpe 
-1 

• Aflven pulse width is about 11 c/ωpe

• 10 macroparticles per cell  

Dispersion relation for EM waves in
magnetized plasma:

Simulation geometry:
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Alfven pulse
  vA~ 0.2 c

 K. Reil (SLAC), PC and R. Sydora (U of Alberta)

ωpe
2

 = 4πe2n/m
Ωc = eB/mc





Rmass=1 T=25 ωp
-1



Rmass=1 T=150 ωp
-1



Rmass=1 T=275 ωp
-1



Rmass=1 T=400 ωp
-1





Rmass=1 T=25 ωp
-1 (Zoomed)



Rmass=1 T=150 ωp
-1 (Zoomed)



Rmass=1 T=275 ωp
-1 (Zoomed)



Rmass=1 T=400 ωp
-1 (Zoomed)





Rmass=2 T=25 ωp
-1



Rmass=2 T=150 ωp
-1



Rmass=2 T=275 ωp
-1



Rmass=2 T=400 ωp
-1





Rmass=2 T=25 ωp
-1 (Zoomed)



Rmass=2 T=150 ωp
-1 (Zoomed)



Rmass=2 T=275 ωp
-1 (Zoomed)



Rmass=2 T=400 ωp
-1 (Zoomed)





Rmass=4 T=25 ωp
-1



Rmass=4 T=150 ωp
-1



Rmass=4 T=275 ωp
-1



Rmass=4 T=400 ωp
-1





Rmass=4 T=25 ωp
-1 (Zoomed)



Rmass=4 T=150 ωp
-1 (Zoomed)



Rmass=4 T=275 ωp
-1 (Zoomed)



Rmass=4 T=400 ωp
-1 (Zoomed)



Summary

• Plasma wakefields induced by Alfven shocks can in 
pirnciple efficiently accelerate UHECR particles.

• Preliminary simulation results support the existence 
of this mechanism, but more investigation needed.

• In addition to GRB, there exist abundant 
astrophysical sources that carry relativistic plasma 
outflows/jets.

• Other electromagnetic sources, for example GRB 
prompt signals, filamentation of e+e–  jets, intense 
neutrino outburst, etc., can also excite plasma 
wakefields.

                          So let’s surf and wave!


