PLASMA WAKEFIELD ACCELERATION FOR UHECR IN RELATIVISTIC JETS

Pisin Chen Stanford Linear Accelerator Center Stanford University

- Introduction What makes a good accelerator
- A Brief History of Plasma Wakefields
- Plasma Wakefield Excitation by Alfven Shocks
- Simulations on Alfven Plasma Wakefields
- Summary

International Conference on Ultra Relativistic Jets in Astrophysics Banff, Canada, July 10-15, 2005

Cosmic Acceleration Mechanisms

Addressing the Bottom–Up Scenario for Acceleration of Ordinary Particles:

- Conventional cosmic acceleration mechanisms encounter limitations:
 - Fermi acceleration (1949) (= stochastic accel. bouncing off B-fields)
 - Diffusive shock acceleration (1970's) (a variant of Fermi mechanism) Limitations for UHE: field strength, diffusive scattering inelastic
 - Eddington acceleration (= acceleration by photon pressure)
 Limitation: acceleration diminishes as 1/γ
- Examples of new ideas:
 - Zevatron (= unipolar induction acceleration) (R. Blandford, astro-ph/9906026, June 1999)
 - Alfven-wave induced wakefield acceleration in relativistic plasma (Chen, Tajima, Takahashi, Phys. Rev. Lett. <u>89</u>, 161101 (2002).
 - Additional ideas by M. Barring, R. Rosner, etc.

WHAT MAKES AN IDEAL ACCELERATOR? LESSONS FROM TERRISTRIAL ACCELERATORS

 Continuous interaction between the particle and the accelerating longitudinal EM field (Lorentz inv.)

Gain energy in macroscopic distance

- <u>Pa</u>rticle-field interaction process non-collisional Avoid energy loss through inelastic scatterings
- To reach ultra high energy, linear acceleration (minimum bending) is the way to go

Avoid severe energy loss through synchrotron radiation

Are these criteria applicable to celestial accelerators?

LINEAR VS. CIRCULAR

SLAC

CERN

<u>A Brief History of Plasma Wakefields</u>

Motivated by the challenge of high energy physics

- Laser driven plasma acceleration
 T. Tajima and J. M. Dawson (1979)
- Particle-beam driven plasma wakefield acceleration PC, Dawson et al. (1984)
- Extremely efficient:

 $eE \ge \sqrt{n} \text{ [cm-3] eV/cm}$

For $n=10^{18}$ cm⁻³, eE=100 GeV/m \rightarrow TeV collider in 10 m!

* Plasma wakefield acceleration principle experimentally verified. Actively studied worldwide

Concepts For Plasma-Based Accelerators

evolves to

- Laser Wake Field Accelerator(LWFA)
 A single short-pulse of photons
- Plasma Beat Wave Accelerator(PBWA)
 Two-frequencies, i.e., a train of pulses
- Self Modulated Laser Wake Field Accelerator(SMLWFA)
 Raman forward scattering instability
- Plasma Wake Field Accelerator(PWFA)
 A high energy electron (or positron) bunch

Structure Collaboration

75

x2101002

5

++ 10 10 e 1

20

PLASMA WAKEFIELD ACCELERATION MECHANISM

 $v > v_c$ (Kelvin-Helmholtz Instability)

Eddington Acceleration

"Pressure" Due to Individual Photons

Anomalous Viscosity

Plasma Wakefield Acceleration

Acceleration Due to Collective Excitations 10-2001 8617A1

Generation of Ponderomotive Force in Plasmas

• Ponderomotive force induced by the interaction of a localized EM energy density in a plasma is $F(r,t) = -\int dk/(2\pi)^3 H_{eff} \sqrt{k,r,t}$,

where f(k,r,t) is the distribution function of the quasi-particles that represent the EM energy density.

• $H_{eff} = \hbar \omega$ and ω satisfies the dispersion relation $\omega^2 - c^2 k^2 = \omega_{pe}^2 / (1 + \Omega_e^2 / \omega^2) + \omega_{pi}^2 / (1 + \Omega_i^2 / \omega^2)$, where $\omega_{pe,pi}^2 = 4\pi e^2 n / m_{e,i}$ and $\Omega_{e,i} = eB / m_{e,i}c$.

PLASMA DISPERSION RELATIONS

ω(k) [v₀=0]

ω

For non-relativistic plasmas, Alfven waves are typically slow: $E_A/B_A = v_A/c \ll 1.$

In an ultra relativistic plasma flow, $E_A/B_A = v_A/c \le 1$. Indistinguishable from subluminous EM waves

Alfven Wave Induced Ponderomotive Force

 The distribution function is related to the Alfven wave/shock energy density of the propagating "driver" is

 $f(k,r,t) = (E_A^2 + B_A^2) / (8\pi\hbar\omega_A) = (v_A^2 + 1) B_A^2 / (8\pi\hbar\omega_A).$

• Inserting into the formula, we find $F(r,t) = - (1/16\pi)[(\omega_{pe}{}^2/\Omega_e{}^2)/(1+\Omega_e{}^2/\omega^2) + (\omega_{pi}{}^2/\Omega_i{}^2)/(1+\Omega_i{}^2/\omega^2)]$ $\cdot \sqrt[\nabla]{} \int dk/(2\pi)^3 (c^2k^2/\omega\omega_A)(E_A{}^2+B_A{}^2).$

Ponderomotive force depends on the *gradient* of the Alfven shock intensity.

Plasma Waves Driven by Different Sources

Equations for electron density perturbation driven by electron beam, photon beam, neutrino beam, and Alfven shocks are similar:

Electron beam
$$\left(\partial_t^2 + \omega_{pe0}^2\right) \delta n_e = -\omega_{pe0}^2 n_{e-beam}$$

Photons
$$\left(\partial_t^2 + \omega_{pe0}^2\right) \delta n_e = \frac{\omega_{pe0}^2}{2m_e} \nabla^2 \int \frac{d\mathbf{k}}{\left(2\pi\right)^3} \frac{N_{\gamma}}{\omega_{\mathbf{k}}}$$

Neutrinos
$$(\partial_t^2 + \omega_{pe0}^2) \delta n_e = \frac{\sqrt{2} n_{e0} G_F}{m_e} \nabla^2 n_v$$
 where δn_e is the perturbed electron plasma density

Bingham, Dawson, Bethe (1993): Application to NS explosion

Alfven Shocks
$$\left(\partial_t^2 + \omega_{pe0}^2\right) \delta n_e = \frac{A}{2m_e} \nabla^2 \int \frac{d\mathbf{k}}{\left(2\pi\right)^3} \frac{c^2 k^2}{\omega_{\mathbf{k}-A}} (E_A^2 + B_A^2)$$

All these processes can in principle occur in astro jets.

Plasma Wakefield Potential

• In the nonlinear regime, the maximum field amplitude that the plasma can support is

 $E_{max} \approx a_0 E_{wb} = a_0 (mc\omega_p/e).$

 E_{wb} is the cold wave breaking limit in the linear regime.

 $a_0 = eE_A/mc\omega_A$ for Alfven shocks.

• For relativistic plasma flow with Lorentz factor Γ_{p} , the maximum "acceleration gradient" mcexperienced by a single charge riding on the this PWF is

 $G = e E_{max} / \Gamma_p^{1/2} \approx a_0 mc^2 (4\pi r_e n / \Gamma_p)^{1/2} .$

CONNECTION TO ULTRA RELATIVISTIC JETS

- Assume GRB is the site of acceleration, with energy release ~ 10^{50} erg/sec. Assume 10^{-4} goes into Alfven shocks. Then the Alfven shock amplitude is $B_A \sim 10^{10}$ G at $R \sim 10^9$ cm.
- Assume that at $R \sim 10^9$ cm, the relativistic jet has a density $n \sim 10^{20}$ cm⁻³ and balk flow of $\Gamma \sim 10^2$.
- Taking these and $\omega_A \sim 10^4 \text{ sec}^{-1}$ as references, we find the acceleration gradient

 $G = 10^{15} [(eB_A/mc\omega_A)/10^9] [10^2/\Gamma]^{1/2} [10^9/R]^{1/2} eV/cm.$

• For the sake of discussion, let's take all [...] to be 1. Then we obtain $\varepsilon = 10^{20} \,\text{eV}$ in a distance $L \sim 10^5 \,\text{cm}$!!

ENERGY SPECTRUM

 Stochastic encounters of accelerating and decelerating phase of plasma wakefields results in energy distribution that follows the Fokker-Planck equation:

 $\partial f/\partial t = \partial/\partial \varepsilon \int d(\Delta \varepsilon) \Delta \varepsilon W(\varepsilon, \Delta \varepsilon) f(\varepsilon, t) + \partial^2/\partial \varepsilon^2 \int d(\Delta \varepsilon) (\Delta \varepsilon^2/2) W(\varepsilon, \Delta \varepsilon) f(\varepsilon, t)$

- Assumptions on the transition rate $W(\varepsilon, \Delta \varepsilon)$ in plasma wakefield:
 - a. $W(\varepsilon, \Delta \varepsilon)$ is an even function of $\Delta \varepsilon$ b. $W(\varepsilon, \Delta \varepsilon)$ is independent of $W(\varepsilon, \Delta \varepsilon) = \text{const.}$

 - c. $W(\varepsilon, \Delta \varepsilon)$ is independent of $\Delta \varepsilon$

ENERGY SPECTRUM

• Steady state $(\partial f / \partial t = 0)$ solution:

$$f(\varepsilon) = \varepsilon_0 / \varepsilon^2$$

- * Power-law spectrum results from random encounters of accelerating-decelerating phases; Particle momentum direction unchanged.
- When "phase slippage" and other dissipative energy loss mechanisms are included, the power-law may be modified:

$$f(\varepsilon) = \varepsilon_0 / \varepsilon^{2+\alpha}$$

Alfven Wave Induced Wake Field Simulations

K. Reil (SLAC), PC and R. Sydora (U of Alberta)

7

Dispersion relation for EM waves in magnetized plasma:

E.M. waves propagate when

(i) $\omega > \sqrt{2\omega_{pe}^2 + \Omega_e^2}$, the high frequency branch

(ii) $\omega < \Omega_e,$ the low frequency (or Alfven) branch

$$\omega \simeq kV_A(1 - rac{k^2\omega_{pe}^2V_A^2}{\Omega_e^4c^2})$$
, where $V_A = rac{c}{\sqrt{(1+2rac{\omega_{pe}^2}{\Omega_e^2})}}$

Simulation geometry:

Simulation parameters for plots:

- e+ e- plasma (mi=me)
- Zero temperature (Ti=Te=0)
- $\Omega_{ce}/\omega_{pe} = 1$ (normalized magnetic field in the x-direction)
- Normalized electron skin depth c/ω_{pe} is 15 cells long
- Total system length is 273 c/ ω_{pe}
- dt=0.1 ω_{pe}^{-1} and total simulation time is 300 ω_{pe}^{-1}

➤ X v_A~ 0.2 c

• Aflven pulse width is about 11 c/ ω_{pe}

Alfven pulse

v 10 macroparticles per cell

 \mathbf{E}_{v}

B

$R_{mass} = 1 T = 25 \omega_{p}^{-1}$

$R_{mass} = 1 T = 150 \omega_{p}^{-1}$

$R_{mass} = 1 T = 275 \omega_{p}^{-1}$

$R_{mass} = 1 T = 400 \omega_{p}^{-1}$

$R_{mass} = 1 T = 25 \omega_{p}^{-1} (Zoomed)$

R_{mass} =1 T=150 ω_{p}^{-1} (Zoomed)

R_{mass} =1 T=275 ω_{p}^{-1} (Zoomed)

R_{mass} =1 T=400 ω_{p}^{-1} (Zoomed)

 $R_{mass} = 2 T = 25 \omega_{p}^{-1}$

1000 1200 1400

1800 2000

R_{mass} =2 T=25 ω_{p}^{-1} (Zoomed)

$R_{mass} = 2 T = 150 \omega_{p}^{-1}$ (Zoomed)

$R_{mass} = 2 T = 275 \omega_{p}^{-1} (Zoomed)$

R_{mass} =2 T=400 ω_{p}^{-1} (Zoomed)

 $R_{mass} = 4 T = 275 \omega_{p}^{-1}$

R_{mass} =4 T=25 ω_{p}^{-1} (Zoomed)

R_{mass} =4 T=150 ω_{p}^{-1} (Zoomed)

R_{mass} =4 T=275 ω_{p}^{-1} (Zoomed)

R_{mass} =4 T=400 ω_{p}^{-1} (Zoomed)

<u>Summary</u>

- Plasma wakefields induced by Alfven shocks can in pirnciple efficiently accelerate UHECR particles.
- Preliminary simulation results support the existence of this mechanism, but more investigation needed.
- In addition to GRB, there exist abundant astrophysical sources that carry relativistic plasma outflows/jets.
- Other electromagnetic sources, for example GRB prompt signals, filamentation of e^+e^- jets, intense neutrino outburst, etc., can also excite plasma wakefields.

So let's surf and wave!