

Banff State Dept of Ultrarelativistic Jets GRBs 101

Practice Final Exam Time 1hr Collaboration Allowed

Sample Questions

- What have GRB observers done for us lately?
- Compare and contrast: GRB, AGN, PWN, GSL, SGR, YSO
- Distinguish temporally short and long bursts
- Define thoughtfully: jet, pancake?
- Why are jets thought to be fluid dynamical?
- How do black holes work?
- Why has it taken so long to develop GRMHD codes?
- Describe carefully the chain of events that leads to a magnetar explosion
- Discuss prophetically what we will learn in the future about GRB

What have GRB observers done for us lately?

- HETE, Integral, Swift
- Short 050509b XRF, z=0.22
- Afterglow >=Burst, E> 10⁴⁹erg
- Amati: $E_{iso} \sim E_p^2$ may be selection effect
- 3 x 10⁻⁶ yr⁻¹ G⁻¹; 3 x 10⁻⁴ SN
- SN1c w/o GRB
- Long bursts w/o SN!

HETE-2 observations confirmed that softer and dimmer (long) GRBs smoothly extend to XRFs through an intermediate class, X-Ray Rich GRB (XRR).

Origins of XRFs & XRRs are the same as (long) GRBs.

Ghirlanda Ghiselline and Firmani 05:

The Tail

- Quasi-periodic oscillations at 18, 30.4, 92.5 Hz (Israel et al. 2005)
 - possibly represent seismic modes on neutron star surface, coupled to magnetosphere (30, 92 Hz) and to 7 x 10¹⁵ G interior field (18 Hz)
- Unpulsed component of tail good fit to trapped fireball model (Hurley et al. 2005)

Compare and contrast: GRB, AGN, PWN, GSL, SGR, YSO

- All make high M (aka Γ) jets possess disks and have spinning central stars
- GRB outflows, which have the highest M, generally supposed to gas dynamical
- Remainder MHD!

Some Questions

- How is the fireball entropy created?
- How do you sustain ultrasonic jets?
- Why do the baryons remain and not the field?
- Where are there no thermal precursors?
- Why aren't afterglow shocks "universal"
 - How are particles accelerated and field amplified?
- What determines the jet opening angle?
- What are X-ray flashes?
- Where are the orphan afterglows?

Unipolar Induction

- Rules of thumb:
- $\Phi \sim B R^2$; $V \sim \Omega \Phi$
- $I \sim V / Z_0$; $P \sim V I$

	PWN	AGN	GRB
B	100 MT	1 T	1 TT
ν	10 Hz	10 µ Hz	z 1 kHz
R	10 km	10 Tm	10 km
V	3 PV	300 EV	30 ZV
Ι	300 TA	3 EA	300 EA
Ρ	100 XW	1 TXW	10 PXW

UHECR!

Distinguish temporally short and long bursts

- May be essentially similar
 - Orientation
 - Inhomogensity
- Short bursts could be
 - Millisecond magnetars
 - NS binaries

— …

• Swift!

A Unified Model: Concept

We assume that a GRB jet consists of multiple subjets.

(Nakamura 00, Kumar & Piran 00)

Viewing angle effects cause diversity of phenomena.

Define carefully jet, pancake?

• Jets are 4 time longer than they are wide in the rest frame (Bridle)

What is subjet?

Multiple subjet model = Inhomogeneous jet model

But we do not calculate the detailed process of each internal shock.

Relativistic Jet Simulations with RAM (2004)

Why are jets thought to be fluid dynamical?

- Occam!
- FD much easier than MHD/EM

– Plenty hard enough - RAM

- Ignorance
- May be right

Early optical emission (∝t⁻²) + radio flare: •1 bursts

Early optical emission (∞t⁻²) - no radio detection: •2 bursts

Early radio flare - no early optical observations: •2 bursts

Early optical emission that do not decay as t⁻² •4 bursts

Tight upper limits (R>17mag) on any early (t<100sec) optical emission:

•6 bursts (all are faint; fluence $\leq 10^{-6} \text{ erg/cm}^2$)

Electromagnetic GRB Model

RB + Lyutikov

Gravitational binding energy=>EM energy flux

Organized Poynting flux (disorganized also possible)

 $V_{EM} = E/B \sim c$

Electromagnetic acceleration -> Γ ~100, M < 1

Pairs combine, gammas escape, E,B dominate

Poynting flux catches shocked circumstellar medium at $\sim 10^{16}$ cm

Form regions with E>B; pairs accelerated

Relativistic internal motions

GRB

Sweep up ISM at ~ 10^{17} cm

Field incorporated from magnetic piston, shock acceleration Anisotropic afterglow

II Bubble Inflation

•Collapsar/hypernova within stripped star, $R \sim 10^{11}$ cm

•Surface return current, surface stress ~ $(I/R\sin\theta)^2$

- Anisotropric expansion in absence of rotation

•Dissipation inevitable if V<c/ln($\theta_{max}/\theta_{min}$)~0.1c; otherwise not

– cf PWN

- Rationale for fireball model?
- •Compute evolution given envelope dynamics; t_{breakout}~10s
- •Biconical expansion outside star dictated by CSM
- •Shell forms when $r>ct_s \sim 3 \times 10^{12}$ cm; ultrarelativistic expansion

•Thermal precursor measure of dissipation?

III Shell Expansion

Shocked

Circumstellar

Medium

Eco

- $r_{GRB} \sim \Gamma^2 ct_s \sim (Lt_s^2/\rho c^2)^{1/4} \sim 10^{16} cm$
- V= ExB/B^2 ; $\Gamma \sim 100$
- Piston thickness $ct_s \sim 3x10^{12} cm \sim$
- Instability=>variable γ -ray emission
- Facilitates escape of hardest γ -rays

IV Blast Wave

- • $r_{GRB} < r < r_{NR} \sim (Lt_s/\rho c^2)^{1/3} \sim 10^{18} cm; \Gamma \sim 100-2$
- •Achromatic break when $\Gamma \sim \theta^{-1}$
- •Magnetic field mixed in from CD?
- •Particles accelerated at shock?
- •Energy per sterad constant
- •Standard qualitative interpretation of afterglow spectra
 - More variation than in shock models θ is important parameter
- •Axial currents->short bursts?
- •Becomes more spherical when $r > r_{NR}$

θ

How do black holes work?

- Background geometry for disk dynamics
- Modify EM => Energy extraction from spacetime as well as gas
- Create anisotropic Maxwell tensor

Jets from binary stars BH or NS

(Schematic figure)

Mass donor star Accretion disk

Jets

Archimedean Disks

Net radial field Conservative disk Ignore irradiation, self-gravitation etc

Magnetic pressure dominates and field lines escape

Pictor A

Electromagnetic Transport 10¹⁸ not 10¹⁷ A DC not AC No internal shocks

Wilson et al

Current Flow

Nonthermal emission is ohmic dissipation of current flow?

Pinch stabilized by velocity gradient

Equipartition in core

Why has it taken so long to develop GRMHD codes?

• It's hard

Simulating Accretion Disks

•<u>3D GRMHD:</u>

- •Explicit 3+1 FD code, Kerr background (BL)
- •Equations of motion from <u>conservation laws</u>
- •Induction equation using Constrained Transport
- •Initial Conditions:
- •Torus + seed magnetic field (MRI)
- •Ambient medium: dust + external field

Kerr BH with an initial weak poloidal magnetic fields

Nishikawa

Describe carefully the chain of events that leads to a magnetar explosion

- Release of magnetic energy into magnetosphere
- Dissipation
- Relativistic Outflow
- Blast Wave
- Afterglow

Magnetars

• Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs)

- occasional X-ray/ γ -ray bursts
- very rare giant γ -ray flares
- slow X-ray periods ($P \sim 5-12$ sec)
- rapid spin-down, sudden changes in torque
- low Galactic latitude, some in SNRs
- not seen in radio, no companions
- -young neutron stars, but not ordinary pulsars, not accreting binaries
- $\Rightarrow ``magnetars '', isolated neutron stars$ with B_{surface} ~ 10¹⁴-10¹⁵ G(Duncan & Thompson 1992; Kouveliotou et al 1998)
- Rare objects: only ~12 magnetars known
 - active lifetimes ~10 kyr
 - $\sim 10\%$ of neutron star population?

(Kouveliotou et al. 1994; Gaensler et al. 2001, 2005)

Robert S. Mallozzi, UAH / NASA MSFC

E. L. Wright (UCLA), COBE Project, Courtesy MSFC, NASA

Further Considerations

- Pre-existing shell
 - bow shock? (Gaensler et al. 2005)
 - shock driven by flare? (Granot et al. 2005)
 - data at t < 7 days are needed! (Fan et al. 2005)
- Motion of centroid implies outflow was anisotropic (Taylor et al. 2005; Granot et al. 2005)
 - hemispherical outflow? wide jet?
 - for outer edge of source expanding at β ,

 $\Pi\beta = \beta_{\text{apparent}} \approx 1.0 \quad \rightarrow\beta \approx 0.7$

 $\rightarrow M_{ejected} \approx 9 \text{ x } 10^{24} \text{ g}$, $E_{kinetic} \approx 7 \text{ x } 10^{44} \text{ ergs}$

- Compactness (Gelfand et al. 2005; Granot et al. 2005)
 - patchy ejecta, or concentric structures
 - low baryon content along line of sight
- Late time features in light curve
 - continued activity from SGR 1806-20?

Weakly collimated pulsating tail

 $\Delta \theta_{tail}$ 1 rad is possible in magneter model. (but collimation degree highly depends on B-field configuration.)

Nakar

Relativistic Spheromak Interpretation

- Magnetic flux loop escape from neutron star
 Thermomagnetic dynamo?
- Inductive electric field accelerates optically thick pair plasma in rough thermal equilibrium
- "Spheromak" expelled by magnetosphere with speed ~ c
- Anisotropic ultrarelativistic expansion in moving frame
 Quickly expand to Γ~10, pairs annihilate and gamma rays escape
- anisotropic expansion $\beta_{ob} \sim \cot \theta / 2$, $D \sim (1 + \beta_{ob}^2) / 2\Gamma$
- Deceleration by circumstellar medium

Discuss prophetically what we will learn in the future about GRB

- Next 1806 superburst
- High redshift universe
- VLBI
- GLAST/ HESS
- Neutrinos
- LIGO
- Numerical simulations