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Abstract

We investigate possible formation sites of the cannonballs (CB, as described by Dar &jibda F004) in the gamma ray bursts context by calculating their physical parameters, such as density, magnetic field and temperature close tp the «
Our results suggest that CBs can only be formed as instabilities (knots) within magnetized jets from hyperaccreting disks. These instabilities would most likely set in beyond the light cylinder where flow velocity with Lorentz factorq as hic
can be achieved. Our findings challenge the CB model of GRB if these indeed form inside core-collapse supernovae (SNe) as suggested in the literature; unless hyperaccreting disks and the corresponding jets turn out to be f natu
core-collapse SNe.

Introduction

We explore the propagation and evolution of CBs in order to estimate their conditions at the formation sites. The CB parameters (density, magnetic field and temperature) are integrated backwards to the plausible source from thq distal
CBs become transparent to their enclosed radiation, as described by Dar &jida R004). We assume that CBs expand with constant expansion velogitys ¢/ V3, and that the CBs move with constant Lorentz fagteg. This implies that
the ratio between CB radius and the distance it has travelled remains constant. We stop the backward integration when the density reaches nuclear saturation density or when the temperature bécafe larger than

Model and Results Case 1 Case 2
The remaining CB parameter is the temperature, which we compute using thi@ this case we include degeneracy pressure and neutrino effects durigg the
We have studied 8 cases of CBs with different Lorentz factiorg) and total energy equation; evolution and expansion of the CBs. The new energy equation becomes:
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The density is shown in Fig. 1. S . L By, = -RT M¢cp
We assume equipartition between magnetic, radiation and gas thermal ener- 2 4

gies at the source, and therefore take the total internal energy in the CB to be

e The magnetic field strength is estimated from equipartition condition, three times the magnetic energy 0 “34 o \9/8 101K
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e The total internal energy in the CB is thus:

e The total energy i€, = 3Ema0 + £, WhereE,, is the neutrino energy. Fo
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e : e The resulting temperature is shown in Fig. 3. e Two types of neutrino cooling can occur, neutrino emission due to pair gnni-
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Fig 2: The magnetic field strength vs distance from origin for the different CB cases. equation taking pressure degeneracy and neutrino cooling into account.

Formation sites

e CB conditions at the source derived from our calculations seem to favor hy- Eunel et Disé—jet e To a first order, instabilities related to ABwn crossing time can develop dn
peraccretion disks. Conditions in hyperaccretion disks (Popham et al. 1999): e ——— — m— timescales
p~ 10%g/ecm™3, T ~ 1011 K, B ~ 10" — 101° G, comparable to the con- |
ditions found for case 1-4 at the light cylinder.
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where R Is the radius of the disk-jet. Far?), < Ry < 10R). (R is the
radius of the light cylinder), we arrive gf,; ~ 1 —10 ms which would imply
the plausible formation of blob of matter as massive\ag; = t;,sMjet ~

10~8 — 10~ "My This can be compared to the typical CB mass of the ofder

e However, if CBs form within the hyperaccretion disk, acceleration to Lorentz
factors of the order 1000 seems a major challenge.

e The most likely scenario is for CBs to form as instabilities in jets from hyper-

accretion disks. In this case the disk material has already been accelerated to Mep = 107" Mo,
[' > 1000 by the time it reaches the light cylinder (Fendt & Ouyed 2004). _ o o .
. | e Funnel jets are ultra-relativistic low-density jets (De Villiers et al. 20(5).
e Disk-jets become cylindrically collimated beyond the light cylinder (Fendt & Compact star -xocretion disk i Although instabilities occur in funnel-jets, the instabilities have much loyer
Memola 2001). Knot generating instabllities occur as jets collimate (Ouyed i, 5. |jiystration of Funnel-jet and Disk-jet. The funnel-jet is launched from a region close ~ d€nsities than required for CBs (De Villiers et al. 2005). Fig. 5 showg an
et al. 1997), and CBs could form as instabilities beyond the light cylinder. to the compact star. The disk-jet is launched from the accretion disk. llustration of funnel-jets and disk-jets.
Conclusion
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