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ABSTRACT

The current work consists of numerical modeling of the expansion of the high

pressure, low density cavity inflated by the energetic outflow from the pulsar

inside the stellar wind environment provided by the stellar companion. In ad-

dition to modeling the pulsar bubble expansion, the diffusion loss equation is

solved during the expansion. This give the evolution of the relativisitic electron

population during the expansion and also the emission from the electrons, by

synchrotron and inverse Compton processes.

1. Model Summary

A rapidly rotating pulsar injects magnetic field and relativistic particles into its pulsar

wind nebula. The nebula is highly overpressured and hereafter is refered to as a bubble. The

bubble and expands into its environment- the stellar wind of the early B-type companion

star. Due to asymmetry in density in the stellar wind, the bubble expands more rapidly in

the direction away from the companion. The asymmetry increases as the velocity of the outer

end of the bubble increases, while the velocity of the inner end stagnates. The dynamics of

the bubble expansion are described in the following sections.

2. Bubble Interior

The millisecond pulsar’s wind has a termination shock at its contact with the external

wind material. We model the dynamics of the resultant plerion or “bubble”. The parameters

chosen for calculation are based on the properties of the system LSI +61◦303 . In the

model there is constant energy injection inside a a strong stellar wind (Pw ∝ x−n where

2.2 < n < 3.2, typical for Be stars) which results in a bubble separated by the stellar wind

by a thin surface containing all of the swept-up stellar wind material.
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2.1. Magnetic Field Evolution

The magnetic field in the interior of the bubble evolves due to adiabatic expansion

losses and injection from the pulsar. We assume a spatially uniform magnetic field due to

the dominance of magnetic pressure and the high speed of sound in the bubble interior.

First consider the case of adiabatic losses of the magnetic field but no injection. Due to flux

conservation through an expanding cross-section of the bubble,

Φ =

∫

S

~B · d ~A = Br · A

dΦ

dt
= 0 =

dBr

dt
A + Br

dA

dt
(1)

Here the surface S is chosen (arbitrarily) to be on the equatorial plane. For the case of

uniform expansion, volume expansion is related to area expansion by,

1

3

dV

V
=

1

2

dA

A

Which along with eq. (1) gives,
dBr

dt
= −

2

3

Br

V

dV

dt
(2)

The change in magnetic field due solely to energy injection (no expansion) can be found

by considering a fixed inner boundary through which magnetic energy from the pulsar is

being injected(see fig. ??). We consider injection at a constant rate Choosing a cylinder of

equal radius and height as the fixed boundary gives,

kΦ ≡
dΦb

dt
=

dBr

dt
3πR2

b (3)

V = kV R3
b → R2

b = kV V
2

3

dBr

dt
=

kΦ

3πkV

V −
2

3

We want to use the components of the magnetic field that contribute to overall pressure,

and we assume the field components on average are of equal magnitude.

dB

dt
=

2

3

kΦ

πkV

V −
2

3 (4)

Adding the contributions from eqs. (2 & 4) gives,

dBr

dt
= −

2

3

Br

V

dV

dt
+

k

V
2

3

Multiplying by an integrating factor gives the solution,

B(t) =
(

kt + B0V
2

3

0

)

V (t)−
2

3 (5)
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2.2. Momentum Equation and Pressure Balance

Pb is the bubble pressure due to magnetic field, and Pw is the primary star’s wind

pressure. For a given piece of the bubble’s shell,

d

dt
(mv) = ṁv + v̇m = ∆A (Pb − Pw)

→ v̇ = −v
ṁ

m
+

∆A

m
(Pb − Pw)

The wind pressure is from Pw = nwkTw,

Pw = 2.158

(

10R�

x

)3.2

The mass swept up by a shell piece of area ∆A is,

ṁ = ρwvb∆A

Where ρw is the wind density,

ρw = ρ0

(

x

10R�

)−n

where ρ0 is the density at 10R�, and x is the distance from the primary star to a point on

the bubble surface. Now define a constant,

c = ρ0 (10R�)−3.2

Then we have two coupled differential equations,

d2rb

dt2
=

dvb

dt
= −

c

x3.2

∆A

m
v2

b +

(

B2

µ
− Pw

)

∆A

m
(6)

dm

dt
=

c

x3.2
vb∆A (7)

where rb is the radius of the bubble wall from the pulsar. These can be solved computationaly

with the relations,

x =

√

(z + L)2 + ρ2

r2
b = z2 + ρ2

.
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3. Diffusion Loss Equation Solution

There are three mechanisms for electron energy loss.

1 - Synchrotron Losses,
dE

dt
= −asB

2E2

2 - Inverse Compton Scattering,
dE

dt
= −acUradE

2

where Urad is the radiation from the primary star,

Urad = Lrad/4πc
〈

x2
〉

3 - Adiabatic Losses for a relativistic fluid,

dE = −P · dV

P =
1

3

E

V

dE

dt
= −

1

3

E

V

dV

dt

Now define,

f1 = asB
2 + acUrad

f2 =
1

3V

dV

dt

b = −
dE

dt tot
= f1E

2 + f2E

The diffusion loss equation with the assumption of a well-mixed fluid is,

dN

dt
=

∂

∂E
[b(E)N(E)] + Q(E)

dN

dt
=

∂N

∂E

dE

dt
+

∂N

∂t

(2f1E + f2) N(E) + Q(E) = −2
(

f1E
2 + f2E

) ∂N

∂E
+

∂N

∂t
(8)

Solving the eq. (8) using method of characteristics,

N (E(s), t(s)) =>
dN

dt
=

∂N

∂E

dE

ds
+

∂N

∂t

dt

ds
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Relating the above equation with eq. (8) gives,

t = s (9)

dE

ds
= −2

(

f1E
2 + f2E

)

(10)

dN

ds
= (2f1E + f2) N(E) + Q(E) (11)

the second is a Bernoulli ODE and the third a linear ODE that have solutions,

E(t) = V (t)−
2

3

(
∫

t

V (t′)−
2

3 2f1(t
′)dt′ + V

−
2

3

0 E−1
0

)−1

(12)

N(t) =

∫

t
e

R

t′
−2f1(t′′)E(t′′)dt′′V (t′)−

1

3 Q(E(t′))dt′ +
(

V
−

1

3

0 H(E0)
)

e−
R

t
2f1(t′)E(t′)dt′V (t)−

1

3

(13)

Which is solved given the output from the RK4 program (time, magnetic field, 〈x2〉, and

volume). Where 〈x2〉 is defined by the volume averge,

〈

x2
〉

=
1

V

N
∑

i=1

Vix
2
i

4. Results

The dynamical evolution of the pulsar wind bubble was calculated using one program

and the solution of the diffusion-loss equation in another. The expansion of the bubble is

illustrated in Fig. 3, which is for the set of parameters: injection rate k = 3 × 1015Tms−1,

density at 10R� ρ0 = 10−8, wind density exponent n = 3.2 and pulsar-companion separation

L = 5.85 × 1010m (called the fiducial case). The plot is made in cylindrical coordinates

with the cylinder axis along the x (horizontal) axis. The pulsar is at coordinates (0,0)

and the companion star at (-100,0). The expansion starts out spherical but then becomes

asymmetrical as the outer boundary (point on the bubble and x-axis which is furthest from

the companion) moves more rapidly than the inner boundary (point on the bubble and x-axis

closest to the companion).

Due to strong adiabatic, synchrotron and inverse-Compton losses, the particle popula-

tion evolves rapidly in time. Fig. 4 shows how the energies of electrons decrease with time

in the first few hundred seconds for the fiducial case and for a stellar photon luminosity

of 1031 W. Above ∼ 10−13J, synchrotron losses dominate and below this energy adiabatic
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Fig. 1.— Bubble boundary vs. time for the fiducial case.

losses dominate. As early as 10s, all electrons with energies above 2 × 10−14J have lost

energy until they are all at this energy. For this calculation the initial spectrum was taken

as very small so its influence is insignificant after <1s. The injection spectrum was taken as

Q(E) = 1037(E/E1)
−1.5J−1s−1, which gives an electron injection rate integrated over energy

of 1022s−1 and an electron energy injection rate of 2 × 1011Js−1 for a maximum electron

energy of E2 = 10−7J. Fig. 4 shows how the electron distribution, N(E,t) changes in the

first few hundred seconds. Injection is resulting in a buildup of total number of electrons,

but energy losses result in the electrons having lower energies. The major problem with the

exact solution of the diffusion loss equation given here, is that only a finite range of electron

energies are followed by the calculation. This range of energies drops rapidly with time to

uninteresting values.

To cure the above problem, an approximate solution of the diffusion loss equation is

made here, which is valid at higher energies. The results are shown in Fig. 4. The electron

population increases slowly with time and has a slope of -2.5, except very near the lowest

energies, where the approximation fails. Fig. 4 shows the resulting inverse Compton and

synchrotron spectral luminosities vs. photon energy in SI units. The injection rate was

chosen so that the observed X-ray flux (Leahy (2003)), for a distance to LSI +61◦303 of

2kpc, agrees with the model luminosity. However the observed radio flux density is far

below that from the model. This is because the synchrotron emission from the bubble is
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Fig. 2.— Inner and outer bubble distances from pulsar vs. time for the fiducial case (k = k0)

and other values of energy injection.

highly optically thick: the observed synchrotron is primarily optically thin and mainly from

remnant electrons from previous radio outbursts (Leahy (2003)).

Since the synchrotron emission is optically thick, the synchrotron losses are drastically

reduced and are much less than the inverse Compton losses. The calculation is redone

omitting synchrotron losses. The resulting exact solution of the diffusion loss equation is

shown in Fig. 4 for E vs. E0, and Fig. 4 for the electron distribution vs. current energy.

The electron distribution drifts to lower energy at a significantly lower rate than for the

case of optically thin synchrotron losses. Fig. 4 shows the approximate calculation for N,

which is valid at higher energies. This yields an inverse compton luminosity similar to that
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shown in Fig. 4, which agrees with observation. A calculation of the synchrotron radiation

for the optically thick case is in progress. After that, a better calculation will be done for the

electron distribution, which includes the exact solution at lower energies and the approximate

solution at higher energies.

REFERENCES

Frail, D.A., Hjellming, R.M. 1991, AJ, 101, 2126

Harrison, F., Ray, P., Leahy, D., Waltman, E., Pooley, G. 2000, ApJ, 528, 454

Hutchings, J.B. and Crampton, D. 1981, Publ. Astr. Soc. Pacific, 93, 486

Leahy, D., Harrison, F., Yoshida, A. 1997, ApJ, 475, 823

Leahy, D.A. 2001, A&A, 380, 516

Leahy, D.A. 2003, A&A, 413, 1019

Marti, J., Paredes, J.M., 1995, A&A, 269, 249

Massi, M., Paredes, J.M., Estalella, R., and Felli, M. 1993, A&A, 269, 249

Paredes, J.M., Figueras, F., 1986, A&A, 154, L30

Ray, P., Foster, R., Waltman, E., Tavani, M., Ghigo, F., 1997 ApJ, 491, 381

Taylor, A.R., Gregory, P.C., 1984, ApJ, 283, 273

Waters, L.B.F.M., Taylor, A.R., van den Heuvel, E.P.J.m Habets, M.J.H., and Persi, P.

1988, A&A, 198, 200

This preprint was prepared with the AAS LATEX macros v5.0.



– 9 –

0 50000 100000 150000
Time (s)

0.1

1.0

10.0

V
el

oc
ity

 (1
00

0 
km

/s
) vouter, k=k0

vinner, k=k0
vouter, k=k0/2
vinner, k=k0/2
vouter, k=2k0
vinner, k=2k0
vouter, k=0.24k0
vinner, k=0.24k0

Fig. 3.— Inner and outer bubble velocities from pulsar vs. time for the fiducial case (k = k0)

and other values of energy injection.
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Fig. 4.— Inner and outer bubble distances from pulsar vs. time for the fiducial case (n = 3.2)

and other values of density power-law.
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Fig. 5.— Inner and outer bubble velocities from pulsar vs. time for the fiducial case (n = 3.2)

and other values of density power-law.
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Fig. 6.— Inner and outer bubble distances from pulsar vs. time for the fiducial case (ρ0 =

10−8kg/m3) and other values of density normalization.
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Fig. 7.— Inner and outer bubble velocities from pulsar vs. time for the fiducial case (ρ0 =

10−8kg/m3) and other values of density normalization.
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Fig. 8.— Electron energy vs. initial energy for several values of time, early in the bubble

evolution.
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Fig. 9.— Electron distribution vs. current energy for several values of time.
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Fig. 10.— Electron distribution vs. current energy, using the approximation (see text).
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Fig. 11.— Photon luminosity vs. photon energy, using the approximation (see text).
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Fig. 12.— Electron energy vs. initial energy for several values of time, omitting synchrotron

losses.
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Fig. 13.— Electron distribution vs. current energy for case of no synchrotron losses.
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Fig. 14.— Electron distribution vs. current energy, using the approximation (see text).


